资源类型

期刊论文 2

年份

2021 1

2019 1

关键词

检索范围:

排序: 展示方式:

Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions

Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 702-717 doi: 10.1007/s11705-019-1861-9

摘要: The work studied a non-catalytic upgrading of fast pyrolysis bio-oil by blending under supercritical conditions using methanol, ethanol and isopropanol as solvent and hydrogen donor. Characterisation of the bio-oil and the upgraded bio-oils was carried out including moisture content, elemental content, pH, heating value, gas chromatography-mass spectrometry (GCMS), Fourier transform infrared radiation, C nuclear magnetic resonance spectroscopy, and thermogravimetric analysis to evaluate the effects of blending and supercritical reactions. The GCMS analysis indicated that the supercritical methanol reaction removed the acids in the bio-oil consequently the pH increased from 2.39 in the crude bio-oil to 4.04 after the supercritical methanol reaction. The ester contents increased by 87.49% after the supercritical methanol reaction indicating ester formation could be the major deacidification mechanism for reducing the acidity of the bio-oil and improving its pH value. Simply blending crude bio-oil with isopropanol was effective in increasing the C and H content, reducing the O content and increasing the heating value to 27.55 from 17.51 MJ·kg in the crude bio-oil. After the supercritical isopropanol reaction, the heating value of the liquid product slightly further increased to 28.85 MJ·kg .

关键词: bio-oil     blending     supercritical     upgrading     characterisation    

Characterisation of a microwave induced plasma torch for glass surface modification

Adam BENNETT, Nan YU, Fengzhou FANG, Marco CASTELLI, Guoda CHEN, Alessio BALLERI, Takuya URAYAMA

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 122-132 doi: 10.1007/s11465-020-0603-5

摘要: Microwave induced plasma torches find wide applications in material and chemical analysis. Investigation of a coaxial electrode microwave induced plasma (CE–MIP) torch is conducted in this study, making it available for glass surface modification and polishing. A dedicated nozzle is designed to inject secondary gases into the main plasma jet. This study details the adaptation of a characterisation process for CE–MIP technology. Microwave spectrum analysis is used to create a polar plot of the microwave energy being emitted from the coaxial electrode, where the microwave energy couples with the gas to generate the plasma jet. Optical emission spectroscopy analysis is also employed to create spatial maps of the photonic intensity distribution within the plasma jet when different additional gases are injected into it. The CE–MIP torch is experimentally tested for surface energy modification on glass where it creates a super-hydrophilic surface.

关键词: microwave induced plasma     spectrum analysis     surface modification    

标题 作者 时间 类型 操作

Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions

Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang

期刊论文

Characterisation of a microwave induced plasma torch for glass surface modification

Adam BENNETT, Nan YU, Fengzhou FANG, Marco CASTELLI, Guoda CHEN, Alessio BALLERI, Takuya URAYAMA

期刊论文