资源类型

期刊论文 10

年份

2024 1

2022 1

2021 1

2019 1

2014 1

2012 1

2010 3

2007 1

展开 ︾

关键词

展开 ︾

检索范围:

排序: 展示方式:

New nanostructured sorbents for desulfurization of natural gas

Lifeng WANG, Ralph T. YANG

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 8-19 doi: 10.1007/s11705-014-1411-4

摘要: Desulfurization of natural gas is achieved commercially by absorption with liquid amine solutions. Adsorption technology could potentially replace the solvent extraction process, particularly for the emerging shale gas wells with production rates that are generally lower than that from the large conventional reservoirs, if a superior adsorbent (sorbent) is developed. In this review, we focus our discussion on three types of sorbents: metal-oxide based sorbents, Cu/Ag-based and other commercial sorbents, and amine-grafted silicas. The advantages and disadvantages of each type are analyzed. Possible approaches for future developments to further improve these sorbents are suggested, particularly for the most promising amine-grafted silicas.

关键词: desulfurization     natural gas desulfurization     hydrogen sulfide sorbent     amine-silica sorbent    

Preparation and selection of Fe-Cu sorbent for COS removal in syngas

Bowu CHENG, Zhaofei CAO, Yong BAI, Dexiang ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 441-444 doi: 10.1007/s11705-010-0507-8

摘要: A series of iron-based sorbents prepared with iron trioxide hydrate, cupric oxide by a novel method was studied in a fixed-bed reactor for COS removal from syngas at moderate temperature. In addition, the sorbents mixed with various additives in different ratios were tested. The effects of additive type and ratio on the breakthrough capacity and desulfurization performance, as well as the influence of operating conditions on sulfidation behavior of the sorbent, were investigated. The simulate gas contained 1% COS, 5% CO , 20%–30% CO and 60%–70% H . The outlet gases from the fixed-bed reactor were automatically analyzed by on-line mass spectrometry, and the COS concentration before breakthrough can be kept steady at 1 ppmv. The result shows that the breakthrough sulfur capacity of the sorbent is as high as 25 g-S/100 g. At 700 K and space velocity of 1000 h , the efficiency of sulfur removal and breakthrough sulfur capacity of the sorbent increase with the increase of copper oxide with an optimum value. The result shows that the species and content of additives also affect desulfurization performance of the sorbent.

关键词: sorbent     desulfurization     COS removal     syngas    

Desulfurization performance of iron-manganese-based sorbent for hot coal gas

Xiurong REN, Weiren BAO, Fan LI, Liping CHANG, Kechang XIE

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 429-434 doi: 10.1007/s11705-010-0504-y

摘要: A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method, and used for H S removal from hot coal gas. The sulfidation tests were carried out in a fixed-bed reactor with space velocity of 2000 h (STP). The results show that the suitable addition of manganese oxide in iron-based sorbent can decrease H S and COS concentration in exit before breakthrough due to its simultaneous reaction capability with H S and COS. Fe O and MnO are the initial active components in iron-manganese-based sorbent, and FeO and Fe are active components formed by reduction during sulfidation. The crystal phases of iron affect obviously their desulfurization capacity. The reducibility of sorbent changes with the content of MnO in sorbent. S7F3M and S3F7M have bigger sulfur capacities (32.68 and 32.30 gS/100 g total active component), while S5F5M has smaller sulfur capacity (21.92 gS/100 g total active component). S7F3M sorbent has stable sulfidation performance in three sulfidation-regeneration cycles and no apparent structure degradation. The sulfidation performance of iron- manganese-based sorbent is also related with its specific surface area and pore volume.

关键词: iron-manganese-based sorbent     sulfidation performance     regeneration     hot coal gas    

Efficient MgO-doped CaO sorbent pellets for high temperature CO

Zhihong Xu, Tao Jiang, Hao Zhang, Yujun Zhao, Xinbin Ma, Shengping Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 698-708 doi: 10.1007/s11705-020-1981-2

摘要: Novel MgO-doped CaO sorbent pellets were prepared by gel-casting and wet impregnation. The effect of Na and MgO on the structure and CO adsorption performance of CaO sorbent pellets was elucidated. MgO-doped CaO sorbent pellets with the diameter range of 0.5 1.5 mm exhibited an excellent capacity for CO adsorption and adsorption rate due to the homogeneous dispersion of MgO in the sorbent pellets and its effects on the physical structure of sorbents. The results show that MgO can effectively inhibit the sintering of CaO and retain the adsorption capacity of sorbents during multiple adsorption-desorption cycles. The presence of mesopores and macropores resulted in appreciable change of volume from CaO (16.7 cm ∙mol ) to CaCO (36.9 cm ∙mol ) over repeated operation cycles. Ca2Mg1 sorbent pellets exhibited favorable CO capture capacity (9.49 mmol∙g ), average adsorption rate (0.32 mmol∙g ∙min ) and conversion rate of CaO (74.83%) after 30 cycles.

关键词: MgO doping     CaO sorbent pellets     gel-casting technique     CO2 capture    

Impact of H2S on Hg0 capture performance over nitrogen-doped carbon microsphere sorbent

《化学科学与工程前沿(英文)》 2024年 第18卷 第3期 doi: 10.1007/s11705-024-2396-2

摘要: A nitrogen-doped carbon microsphere sorbent with a hierarchical porous structure was synthesized via aggregation-hydrothermal carbonization. The Hg0 adsorption performance of the nitrogen-doped carbon microsphere sorbent was tested and compared with that of the coconut shell activated carbon prepared in the laboratory. The effect of H2S on Hg0 adsorption was also investigated. The nitrogen-doped carbon microsphere sorbent exhibited superior mercury removal performance compared with that of coconut shell activated carbon. In the absence of H2S at a low temperature (≤ 100 °C), the Hg0 removal efficiency of the nitrogen-doped carbon microsphere sorbent exceeded 90%. This value is significantly higher than that of coconut shell activated carbon, which is approximately 45%. H2S significantly enhanced the Hg0 removal performance of the nitrogen-doped carbon microsphere sorbent at higher temperatures (100–180 °C). The hierarchical porous structure facilitated the diffusion and adsorption of H2S and Hg0, while the nitrogen-containing active sites significantly improved the adsorption and dissociation capabilities of H2S, contributing to the generation of more active sulfur species on the surface of the nitrogen-doped carbon microsphere sorbent. The formation of active sulfur species and HgS on the sorbent surface was further confirmed using X-ray photoelectron spectroscopy and Hg0 temperature-programmed desorption tests. Density functional theory was employed to elucidate the adsorption and transformation of Hg0 on the sorbent surface. H2S adsorbed and dissociated on the sorbent surface, generating active sulfur species that reacted with gaseous Hg0 to form HgS.

关键词: nitrogen-doped carbon microsphere     H2S     Hg0 removal     adsorption mechanism    

Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated

Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou

《环境科学与工程前沿(英文)》 2019年 第13卷 第2期 doi: 10.1007/s11783-019-1110-y

摘要:

Pilot-scale combustion is required to treat arsenic-enriched biomass in China.

CaO addition to arsenic-enriched biomass reduces arsenic emission.

CaO captures arsenic via chemical adsorption to form Ca3(AsO4)2.

关键词: Arsenic contamination     Phytoremediation     Emission control     Calcium-based sorbent     Biomass disposal     Pilot-scale combustion    

A thermodynamic study of the removal of HCl and H

Joseph LEE, Bo FENG

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 67-83 doi: 10.1007/s11705-011-1162-4

摘要: Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IFGC) systems require high-temperature sorbents that are capable of removing hydrogen chloride and hydrogen sulfide from coal derived gases to very low levels. HCl and H S are highly reactive, corrosive, and toxic gases that must be removed to meet stringent environmental regulations, to protect power generation equipment and to control the emissions of contaminants. The thermodynamic behavior of 13 sorbents for the removal of HCl and H S under various conditions including: initial toxic gas concentration (1–10000 ppm), operating pressure (0.1–11 Mpa), temperature (300 K–1500 K), and the presence of H O were investigated. The correlation between HCl and H S was also examined. Thermodynamic calculations were carried out for the reactions of the 13 sorbents using a FactSage 5.2 software package based on free energy minimization. The sorbents, Na CO , NaHCO , K CO , and CaO are capable of completely removing chlorine at high temperatures (up to ~1240 K) and at high pressures. Water vapor did not have any significant effects on the dechlorination capability of the sorbents. Nine of the sorbents namely; Cu O, Na CO , NaHCO , K CO , CaO, ZnO, MnO, FeO, and PbO, were determined to have great potential as desulfurization sorbents. Cu O and ZnO had the best performance in terms of the optimum operating temperature. The addition of water vapor to the reactant gas produces a slightly detrimental effect on most of the sorbents, but FeO exhibited the worst performance with a reduction in the maximum operating temperature of about 428 K. The dechlorination performance of the alkali sorbents was not affected by the presence of H S in the reactions. However, the desulfurization capability of some sorbents was greatly affected by the presence of HCl. Particularly, the performance of Cu O was significantly reduced when HCl was present, but the performance of FeO improved remarkably. The thermodynamic results gathered are valuable for the developments of better sorbents.

关键词: syngas cleaning     sorbent     desulfurization     dechlorination    

Multi-stage ammonia production for sorption selective catalytic reduction of NO

Chen ZHANG, Guoliang AN, Liwei WANG, Shaofei WU

《能源前沿(英文)》 2022年 第16卷 第5期   页码 840-851 doi: 10.1007/s11708-021-0797-1

摘要: Sorption selective catalytic reduction of nitrogen oxides (NOx) (sorption-SCR) has ever been proposed for replacing commercial urea selective catalytic reduction of NOx (urea-SCR), while only the single-stage sorption cycle is hitherto adopted for sorption-SCR. Herein, various multi-stage ammonia production cycles is built to solve the problem of relative high starting temperature with ammonia transfer (AT) unit and help detect the remaining ammonia in ammonia storage and delivery system (ASDS) with ammonia warning (AW) unit. Except for the single-stage ammonia production cycle with MnCl2, other sorption-SCR strategies all present overwhelming advantages over urea-SCR considering the much higher NOx conversion driven by the heat source lower than 100°C and better matching characteristics with low-temperature catalysts. Furthermore, the required mass of sorbent for each type of sorption-SCR is less than half of the mass of AdBlue for urea-SCR. Therefore, the multifunctional multi-stage sorption-SCR can realize compact and renewable ammonia storage and delivery with low thermal energy consumption and high NOx conversion, which brings a bright potential for efficient commercial de-NOx technology.

关键词: selective catalytic reduction (SCR)     nitrogen oxides (NOx)     ammonia     composite sorbent     chemisorption    

Feasibility study on simultaneous removal of sulfur and trace selenium in the MTD-FGD reactor

LI Yuzhong, TONG Huiling, ZHUO Yuqun, LI Yan, CHEN Changhe, XU Xuchang

《能源前沿(英文)》 2007年 第1卷 第3期   页码 259-263 doi: 10.1007/s11708-007-0036-4

摘要: This study deals with the simultaneous removal of sulfur dioxide (SO) and trace selenium dioxide (SeO) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the feasibility of simultaneous removal of these two pollutants in a moderate temperature dry flue gas desulfurization (MTD-FGD) reactor. The effect of SO presence on selenium capture is studied through the experiments performed on a thermogravimetric analyzer (TGA) and the following conclusions can be obtained. When CaO conversion is relatively low and the reaction rate is controlled by chemical reaction kinetics, the SO presence does not affect selenium capture. When CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO presence and the product layer diffusion resistance jointly reduce selenium capture. Through analyses of some pilot scale MTD-FGD tests, it can be concluded that in the MTD-FGD reactor, the sulfate reaction of sorbent particles is generally kinetically controlled. Therefore, it is feasible that sulfur and trace selenium can be simultaneously removed by Ca-based sorbent in the MTD-FGD reactor.

关键词: Ca-based sorbent     product     feasibility     thermogravimetric analyzer     simultaneous removal    

Regeneration of Fe

Ruizhuang ZHAO, Ju SHANGGUAN, Yanru LOU, Jin SONG, Jie MI, Huiling FAN

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 423-428 doi: 10.1007/s11705-010-0503-z

摘要: Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications. A Fe O -based high-temperature coal gas desulfurizer was prepared using red mud from steel factory. The influences of regeneration temperature, space velocity and regeneration gas concentration in SO atmosphere on regeneration performances of the desulfurization sorbent were tested in a fixed bed reactor. The changes of phase and the composition of the Fe O -based high-temperature coal gas desulfurization sorbent before and after regeneration were examined by X-ray diffraction(XRD) and X-ray Photoelectron spectroscopy(XPS), and the changes of pore structure were characterized by the mercury intrusion method. The results show that the major products are Fe O and elemental sulfur; the influences of regeneration temperature, space velocity and SO concentration in inlet on regeneration performances and the changes of pore structure of the desulfurization sorbent before and after regeneration are visible. The desulfurization sorbent cannot be regenerated at 500°C in SO atmosphere. Within the range of 600°C – 800°C, the time of regeneration becomes shorter, and the regeneration conversion increases as the temperature rises. The time of regeneration also becomes shorter, and the elemental sulfur content of tail gas increases as the SO concentration in inlet is increased. The increase in space velocity enhances the reactive course; the best VSP is 6000 h for regeneration conversion. At 800°C, 20 vol-% SO and 6000 h , the regeneration conversion can reach nearly to 90%.

关键词: high-temperature coal gas     Fe2O3 desulfurization sorbent     SO2 atmosphere     regeneration behaviors     sulfur recovery    

标题 作者 时间 类型 操作

New nanostructured sorbents for desulfurization of natural gas

Lifeng WANG, Ralph T. YANG

期刊论文

Preparation and selection of Fe-Cu sorbent for COS removal in syngas

Bowu CHENG, Zhaofei CAO, Yong BAI, Dexiang ZHANG

期刊论文

Desulfurization performance of iron-manganese-based sorbent for hot coal gas

Xiurong REN, Weiren BAO, Fan LI, Liping CHANG, Kechang XIE

期刊论文

Efficient MgO-doped CaO sorbent pellets for high temperature CO

Zhihong Xu, Tao Jiang, Hao Zhang, Yujun Zhao, Xinbin Ma, Shengping Wang

期刊论文

Impact of H2S on Hg0 capture performance over nitrogen-doped carbon microsphere sorbent

期刊论文

Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated

Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou

期刊论文

A thermodynamic study of the removal of HCl and H

Joseph LEE, Bo FENG

期刊论文

Multi-stage ammonia production for sorption selective catalytic reduction of NO

Chen ZHANG, Guoliang AN, Liwei WANG, Shaofei WU

期刊论文

Feasibility study on simultaneous removal of sulfur and trace selenium in the MTD-FGD reactor

LI Yuzhong, TONG Huiling, ZHUO Yuqun, LI Yan, CHEN Changhe, XU Xuchang

期刊论文

Regeneration of Fe

Ruizhuang ZHAO, Ju SHANGGUAN, Yanru LOU, Jin SONG, Jie MI, Huiling FAN

期刊论文