Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2007, Volume 1, Issue 4 doi: 10.1007/s11708-007-0066-2

Experimental research on catalysts and their catalytic mechanism for hydrogen production by gasification of peanut shell in supercritical water

State Key Laboratory of Multiphase Flow in Power Engineering, Xi′an Jiaotong University, Xi′an 710049, China;

Available online: 2007-12-05

Next Previous

Abstract

Peanut shell, mixed with sodium carboxymethylcellulose, was gasified at a temperature of 450°C and a pressure range from 24 to 27 MPa with the presence of different catalysts, including KCO, ZnCl and Raney-Ni. The experimental results show that different catalysts have greatly different effects on the reaction. Gasification efficiency (GE), hydrogen gasification efficiency (GHE), carbon gasification efficiency (GCE), yield of hydrogen production ( ) and potential yield of hydrogen production () are applied to describe the catalytic efficiency. From the result of gaseous components, ZnCl has the highest hydrogen selectivity, KCO is lower, and Raney-Ni is the lowest, but Raney-Ni is the most favorable to gasify biomass among the three catalysts, and its , , reach 126.84%, 185.71%, 94.24%, respectively. As expected, hydrogen selectivity increased and CH reduced rapidly when the mixture of ZnCl and Raney-Ni is used under the same condition. The optimization mixture appeared when 0.2 g of ZnCl was added to 1 g of Raney-Ni, 43.56 g · kg of hydrogen pro duction was obtained. In addition, the catalytic mechanisms of different catalysts were analyzed, and the possible reaction pathway was brought forward, which helped to explain the experiment phenomena and results correctly.

Related Research