Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2020, Volume 22, Issue 3 doi: 10.15302/J-SSCAE-2020.03.010

Development of Laser Surface Modification Technology

1. Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, China;

2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;

3. Collaborative Innovation Center of High-end Laser Manufacturing Equipment, Hangzhou 310023, China;

4. State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Funding project:中国工程院咨询项目“我国激光技术与应用 2035 发展战略研究” (2018-XZ-27) Received: 2020-03-15 Revised: 2020-05-08 Available online: 2020-05-27

Next Previous

Abstract

The laser surface modification technology uses high-energy-density laser beams to rapidly process the local vulnerable and consumable areas of components, which can achieve the desired performances on material surfaces and greatly extend the service life of the components. After decades of development, laser surface modification technology has been widely applied to aerospace, petrochemical, energy, transportation, metallurgy and other fields. Taking three typical laser surface modification technologies—laser shock processing, laser quenching, and laser cladding—as examples, this study introduces the technical characteristics and application status of these technologies in China and abroad and analyzes the existing problems. It also proposes the key research directions, including special alloy material preparation, multi-energy-field composited laser surface modification, on-site laser remanufacturing, laser shock processing with controlled shape and performance, intelligent laser surface modification, and laser surface micro-structure preparation. Some development suggestions are further proposed from the aspects of government guidance, domestic innovation, industrial chain improvement, establishment of the quality evaluation standards system, and talent training, in hope to provide references for the development of laser surface modification technologies in China.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] Salimianrizi A, Foroozmehr E, Badrossamay M, et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6 [J]. Optics and Lasers in Engineering, 2016, 77: 112– 117. link1

[ 2 ] Manson S S. 金属疲劳损伤 [M]. 陆索, 译. 北京: 国防工业出版 社, 1976. Manson S S. Metals fatigue damage [M]. Translated by Lu S. Beijing: National Defense Industry Press, 1976.

[ 3 ] 喷丸强化技术编写组. 喷丸强化技术 [M]. 北京: 国防工业出版 社, 1973. Preparation Group of Shot Peening Technology. Shot peening technology [M]. Beijing: National Defense Industry Press, 1973.

[ 4 ] Kalainathan S, Sathyajith S, Swaroop S. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel [J]. Optics and Lasers in Engineering, 2012, 50(12): 1740–1745. link1

[ 5 ] 左敦稳. 现代加工技术(第2版) [M]. 北京: 北京航空航天大学出 版社, 2009. Zuo D W. Modern processing technology (2nd edition) [M]. Beijing: Beihang University Press, 2009.

[ 6 ] 徐滨士, 董世运, 王志坚, 等. 激光再制造 [M]. 北京: 国防工业 出版社, 2016. Xu B S, Dong S Y, Wang Z J, et al. Laser remanufacturing [M]. Beijing: National Defense Industry Press, 2016.

[ 7 ] 孙磊强, 赵作福, 莫梓睿, 等. 激光技术在材料表面改性方面 的研究进展 [J]. 辽宁工业大学学报(自然科学版), 2018, 38(6): 31–34. Sun L Q, Zhao Z F, Mo Z R, et al. Research progress of laser technology in surface modification of materials [J]. Journal of Liaoning University of Technology (Natural Science Edition), 2018, 38(6): 31–34. link1

[ 8 ] 张海琼. 航空燃气涡轮发动机叶片疲劳分析 [D]. 哈尔滨: 哈尔 滨工程大学(硕士学位论文), 2014. Zhang H Q. Fatigue analysis of aero combustion turbine blades [D]. Harbin: Harbin Engineering University (Master’s thesis), 2014. link1

[ 9 ] 乔红超, 赵吉宾, 陆莹. 激光诱导冲击波应用技术研究现状 [J]. 表面技术, 2016, 45(1): 1–6, 48. Qiao H C, Zhao J B, Lu Y. Current status of laser-induced shockwave application technology [J]. Surface Technology, 2006, 45(1): 1–6, 48. link1

[10] 乔红超, 高宇, 赵吉宾, 等. 激光冲击强化技术的研究进展 [J]. 中 国有色金属学报, 2015, 25(7): 1744–1755. Qiao H C, Gao Y, Zhao J B, et al. Research process of laser peening technology [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7): 1744–1755. link1

[11] 中国科学院宁波材料技术与工程研究所. 新一代激光冲击强化 技术研究获得突破 [J]. 表面工程与再制造, 2017, 17(1): 53. Ningbo Institute of Material Technology and Engineering, CAS. A new generation of laser shock peening technology get a breakthrough [J]. Surface Engineering & Remanufacturing, 2017, 17(1): 53. link1

[12] 鲁金忠. 激光冲击强化铝合金力学性能及微观塑性变形机理研 究 [D]. 镇江: 江苏大学(博士学位论文), 2010. Lu J Z. Investigation of laser shock processing on the mechanical properties and micro-plastic deformation mechanism of LY2 aluminum alloy [D]. Zhenjiang: Jiangsu University (Doctoral dissertation), 2010. link1

[13] 杜成明, 朱锦云, 杨振, 等. 65Mn弹簧钢表面激光淬火的显微组 织及性能研究 [J]. 机械工程师, 2020 (3): 52–53. Du C M, Zhu J Y, Yang Z, et al. Study on laser quenched surface microstructure and properties of 65Mn spring steel [J]. Mechanical Engineer, 2020 (3): 52–53. link1

[14] 杨振, 樊湘芳, 邱长军, 等. 激光功率对40CrNiMoA钢表面淬 火组织和摩擦磨损性能的影响 [J]. 金属热处理, 2020, 45(3): 128–133. Yang Z, Fan X F, Qiu C J, et al. Effect of laser power on quenched microstructure and friction and wear properties of 40CrNiMoA steel [J]. Heat Treatment of Metals, 2020, 45(3): 128–133. link1

[15] 杨秋梅, 周亚军, 毛大恒, 等. 激光淬火对回转轴残余应力影响 的研究 [J]. 热加工工艺, 2020, 49(4): 129–132. Yang Q M, Zhou Y J, Mao D H, et al. Influence of laser quenching on residual stress of rotary shaft [J]. Hot Working Technology, 2020, 49(4): 129–132. link1

[16] 杨志翔, 王爱华, 熊大辉, 等. 钢轨表面宽带激光淬火工艺及其 疲劳磨损性能 [J]. 中国机械工程, 2019, 30(3): 253–260. Yang Z X, Wang A H, Xiong D H, et al. Laser wide-band hardening of steel rails and corresponding fatigue wear property [J]. China Mechanical Engineering, 2019, 30(3): 253–260. link1

[17] 张群莉, 童文华, 陈智君, 等. 光斑尺寸对42CrMo钢激光深层淬 火硬化层几何特征的影响 [J]. 表面技术, 2020, 49(1): 254–261. Zhang Q L, Tong W H, Chen Z J, et al. Effect of spot size on geometrical characteristics of laser deep quenching hardened layer of 42CrMo steel [J]. Surface Technology, 2020, 49(1): 254–261. link1

[18] 刘云雷. 镍基高温合金激光再制造零件结合区组织研究与性能 控制 [D]. 南京: 南京航空航天大学(硕士学位论文), 2013. Liu Y L. Research on microstructure and mechanical property control of bonding zone for laser remanufacturing parts of nickel-based superalloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics (Master’s thesis), 2013. link1

[19] Koehler H, Partes K, Seefeld T, et al. Laser reconditioning of crankshafts: From lab to application [J]. Physics Procedia, 2010, 5(A): 387–397. link1

[20] 李俐群, 申发明, 周远东, 等. 超高速激光熔覆与常规激光熔覆 431不锈钢涂层微观组织和耐蚀性的对比 [J]. 中国激光, 2019, 46(10): 1–10. Li L Q, Shen F M, Zhou Y D, et al. Comparison of microstructure and corrosion resistance of 431 stainless steel coatings prepared by extreme high-speed laser cladding and conventional laser cladding [J]. Chinese Journal of Lasers, 2019, 46(10): 1–10. link1

[21] 薛蕾, 黄一雄, 卢鹏辉, 等. 激光成形修复ZL104合金的组织与性 能研究 [J]. 中国表面工程, 2010, 23(1): 97–100. Xue L, Huang Y X, Lu P H, et al. Study on microstructure and property of laser forming repaired ZLl04 alloy [J]. China Surface Engineering, 2010, 23(1): 97–100. link1

[22] 赖海鸣, 郭士锐, 姚建华. 基于母材综合跳动特性的转子表面激 光再制造 [J]. 热力透平, 2014, 43(2): 155–158. Lai H M, Guo S R, Yao J H. Research on characteristics of total indicated runout based on substrate of steam turbine rotor by laser remanufacturing [J]. Thermal Turbine, 2014, 43(2): 155–158. link1

[23] 肖真. 汽轮机汽缸结合面变形分析及激光熔覆修复 [J]. 石油化 工设备, 2017, 46(3): 51–56. Xiao Z. Analysis of steam turbine cylinder joint surface deformation and laser cladding repairing [J]. Petro-Chemical Equipment, 2017, 46(3): 51–56. link1

[24] 封慧, 李剑峰, 孙杰. 曲轴轴颈损伤表面的激光熔覆再制造修复 [J]. 中国激光, 2014, 41(8): 1–6. Feng H, Li J F, Sun J. Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding [J]. Chinese Journal of Lasers, 2014, 41(8): 1–6. link1

Related Research