Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 1 doi: 10.15302/J-SSCAE-2023.01.006

Development Strategy for Advanced Copper-Based Materials in China

1. State Key Laboratory of Nonferrous Metals and Processes, China GRINM Group Co., Ltd., Beijing 100088, China;

2. GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China; 

3. Chinalco Research Institute of Science and Technology Co., Ltd., Beijing 102209, China; 

4. China Copper Institute of Engineering and Technology, Beijing 102209, China

Funding project:Chinese Academy of Engineering project “Research on the Development Strategy of Advanced Nonferrous Metal Materials in China” (2022-XY-20) Received: 2022-12-02 Revised: 2022-12-16 Available online: 2023-02-03

Next Previous

Abstract

Copper and copper-based materials are widely applied to power electronics, automobile, and mechanical manufacturing as well as to high-tech manufacturing fields such as aeronautics, astronautics, telecommunications, and integrated circuits owing to their comprehensive advantages in mechanical, functional, and processing properties. As China is the greatest producer and consumer of milled copper products in the world, advanced copper-based materials are envisioned with a bright prospect in China owing to a vast Chinese market. Starting from a general description of the macrostructure and status quo of China’s copper milling industry, the strengths and weaknesses of material-related development are analyzed. The development status, existing problems, and future development trend of high-strength conductive copper alloy, high-performance electronic copper foils, wear- and corrosion-resistant copper alloys, copper-based thermal management materials, and copper materials for special purposes and new energy in China are emphatically reviewed. Development ideas and suggestions are proposed including laying out frontier directions for major application needs, forming an effective interaction mechanism among production, education, research, and application, and establishing a national industrial and technological development coordination platform for copper-based materials.

Figures

图1

References

[ 1 ] 钟卫佳‍‍ . 铜加工技术实用手册 [M]‍. 北京 : 冶金工业出版社 , 2007 ‍.
Zhong W J‍ . Practical handbook of copper processing technology [M]‍. Beijing : Metallurgical Industry Press , 2007 ‍.

[ 2 ] 汪明朴 , 贾延琳 , 李周 , 等‍ . 先进高强导电铜合金 [M]‍. 长沙 : 中南大学出版社 , 2015 ‍.
Wang M P , Jia Y L , Li Z , al e t ‍. Advanced copper alloy with high strength and conductivity [M]‍. Changsha : Central South University Press , 2015 ‍.

[ 3 ] 姜业欣 , 娄花芬 , 解浩峰 , 等‍ . 先进铜合金材料发展现状与展望 [J]‍. 中国工程科学 , 2020 , 22 5 : 84 ‒ 92 ‍.
Jiang Y X , Lou H F , Xie H F , al e t ‍. Development status and prospects of advanced copper alloy [J]‍. Strategic Study of CAE , 2020 , 22 5 : 84 ‒ 92 ‍.

[ 4 ] 郑玉贵 , 马爱利‍ . 海洋工程用铜合金腐蚀数据手册 [M]‍. 北京 : 化学工业出版社 , 2018 ‍.
Zheng Y G , Ma A L‍ . Corrosion data of copper alloys for marine engineering [M]‍. Beijing : Chemical Industry Press , 2018 ‍.

[ 5 ] 刘平 , 田保红 , 赵冬梅‍ . 铜合金功能材料 [M]‍. 北京 : 科学出版社 , 2004 ‍.
Liu P , Tian B H , Zhao D M‍ . Copper alloy for functional materials [M]‍. Beijing : Science Press , 2004 ‍.

[ 6 ] 方志刚‍ . 舰船腐蚀防漏工程 [M]‍. 北京 : 国防工业出版社 , 2017 ‍.
Fang Z G‍ . Corrosion and leakage prevention engineering for ships [M]‍. Beijing : National Defense Industry Press , 2017 ‍.

[ 7 ] Peter T, Shannon C, Boryana P, al et‍. Copper induces cell death by targeting lipoylated TCA cycle proteins [J]‍. Science, 2022, 375(6586): 1254‒1261‍.

[ 8 ] Kim S J, Kim Y I, Lamichhane B, al et‍. Flat-surface-assisted and self-regulated oxidation resistance of Cu(111) [J]‍. Nature, 2022, 603: 434‒438‍.

[ 9 ] Li X Y, Jin Z H, Zhou X, al et‍. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains [J]‍. Science, 2020, 370(6518): 831‒836‍.

[10] Li W M, Zhao J F, Cao L P, al et‍. Superconductivity in a unique type of copper oxide [J]‍. PNAS, 2019, 116(25): 12156‒12160‍.

[11] Liu C M, Song Y‍. An uneven chain-like ferromagnetic copper(II) coordination polymer displaying metamagnetic behavior and long-range magnetic ordering [J]‍. Magnetochemistry, 2022, 8(1): 2‍.

[12] 国际铜业协会‍ . 抑菌铜常见问题解答 [R]‍. 北京 : 国际铜业协会 , 2014 ‍.
International Copper Association . FAQ of antimicrobial copper [R]‍. Beijing : International Copper Association , 2014 ‍.

[13] 吴琼‍ . 中国铜加工产业沿着高质量发展之路赓续前行 [J]‍. 中国有色金属 , 2022 , 21 : 27 ‒ 33 ‍.
Wu Q‍ . Chinese copper milling industry moves forward along the road of high-quality development [J]‍. China Nonferrous Metals , 2022 , 21 : 27 ‒ 33 ‍.

[14] 智研咨询‍ . 2020年中国铜材行业现状及40年来的铜价格走势分析 [EBOL]‍. 2021-03-14 [ 2022-12-14 ]‍. https:www‍.chyxx‍.comindustry202103938171‍.html‍ .
Intelligence Research Group‍ . Current situation of China´s copper industry in 2020 and analysis of copper price trend in the past 40 years [EBOL]‍. 2021-03-14 [ 2022-12-14 ]‍. https:www‍.chyxx‍.comindustry202103938171‍.html‍ . link1

[15] 贾云‍ . " 亚健康"式"繁荣"——中国铜加工行业现状分析 [J]‍. 中国有色金属 , 2022 , 5 : 40 ‒ 42 ‍.
Jia Y‍ . Sub healthy prosperity—Analysis of the current situation of Chinese copper milling industry [J]‍. China Nonferrous Metals , 2022 , 5 : 40 ‒ 42 ‍.

[16] 李周 , 肖柱 , 解国良 , 等‍ . 时效强化型高强导电铜合金 [M]‍. 长沙 : 中南大学出版社 , 2021 ‍.
Li Z , Xiao Z , Xie G L , al e t ‍. Aging strengthened high strength conductive copper alloy [M]‍. Changsha : Central South University Press , 2021 ‍.

[17] Xia T T, Liang T X, Xiao Z E, al et‍. Nanograined copper foil as a high-performance collector for lithium-ion batteries [J]‍. Journal of Alloys and Compounds, 2020, 831: 154801‍.

[18] 马朝利 , 李周 , 李廷举 , 等‍ . 海洋工程有色金属材料 [M]‍. 北京 : 化学工业出版社 , 2017 ‍.
Ma C L , Li Z , Li T J , al e t ‍. Nonferrous metal materials for marine applications [M]‍. Beijing : Chemical Industry Press , 2017 ‍.

[19] Schütze M, Feser R, Bender R, al et‍. Corrosion resistance of copper and copper alloys [M]‍. Hoboken: Wiley, 2013‍.

[20] Chen S H, Mi X J, Bie L F, al et‍. Effect of rare earth Ce on microstructure and wear resistance of HMn64-8-5-1‍.5 alloy [J]‍. Rare Metal Materials and Engineering, 2020, 49(3): 811‒818‍.

[21] Xie Z N, Guo h, Zhang Z, al et‍. Thermal expansion behaviour and dimensional stability of Diamond/Cu composites with different diamond content [J]‍. Journal of Alloys and Compounds, 2019, 797: 122‒130‍.

[22] 张习敏 , 郭宏 , 尹法章 , 等‍ . 金刚石 铜复合材料界面结合状态的改善方法 [J]‍. 稀有金属 , 2013 , 37 2 : 335 ‒ 340 ‍.
Zhang X M , Guo H , Yin F Z , al e t ‍. Improving method of interface bonding state in diamondCu composite material [J]‍. Rare Metal , 2013 , 37 2 : 335 ‒ 340 ‍.

[23] Xie W B, Wang Q S, Mi X J, al et‍. Microstructure evolution and properties of Cu-20Ni-20Mn alloy during aging process [J]‍. Transactions of Nonferrous Metals Society of China, 2015, 25: 3247‒3251‍.

Related Research