Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 1 doi: 10.15302/J-SSCAE-2023.01.008

Research Progress and Future Development of Nonferrous Biomedical Materials

1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;

2. School of Materials Science and Engineering, Peking University, Beijing 100871, China;

3. National Engineering Research Center for Biomaterials, Chengdu 610064, China 

Funding project:National Key R&D Program project (2021YFC2400700, 2016YFC1102400); Chinese Academy of Engineering project “Research on the Development Strategy of Advanced Nonferrous Metal Materials in China” (2022-XY-20); National Natural Science Fund project (U1804251) Received: 2022-11-12 Revised: 2023-01-03 Available online: 2023-01-30

Next Previous

Abstract

Nonferrous biomedical materials have developed rapidly in recent years. A variety of new nonferrous biomedical materials and devices that adapt to different in vivo environments and tissues have been developed. It is of both theoretical and practical values to make research plans to improve the clinical application level of new nonferrous biomedical materials and devices. This study clarifies the key performance requirements of the nonferrous biomedical materials, regarding corrosion resistance, wear resistance, fatigue strength and toughness, and biocompatibility. The research progress, development trend, and scientific issues of nonferrous medical materials for permanent implants, biodegradable nonferrous medical materials, porous nonferrous medical materials, and surface modification of nonferrous medical materials are reviewed. After summarizing the future research directions of various nonferrous biomedical materials, this study proposes the following development suggestions: (1) strengthening basic research and the development of key core technologies, (2) establishing a collaborative innovation community that integrates industry, education, research, medicine, and supervision, (3) formulating relevant standards and evaluation norms, and (4) developing a highly skilled professional training system, thereby providing a guiding reference for developing the new material industry and relevant cutting-edge technologies.

References

[ 1 ] Tu H L, Zhao H B , Fan Y Y, al‍‍ et. Recent developments in nonferrous metals and related materials for biomedical applications in China: A review [J]‍. Rare Metals, 2022, 41(5): 1410‒1433‍.

[ 2 ] 张文毓‍ . 生物医用金属材料研究现状与应用进展 [J]‍. 金属世界 , 2020 1 : 21 ‒ 27 ‍.
Zhang W Y‍ . Research status and application progress of biomedical metal materials [J]‍. Metal World , 2020 1 : 21 ‒ 27 ‍.

[ 3 ] 郑玉峰 , 杨宏韬‍ . 血管支架用可降解金属研究进展 [J]‍. 金属学报 , 2017 , 53 10 : 1127 ‒ 1137 ‍.
Zheng Y F , Yang H T‍ . Research progress in biodegradable metals for stent application [J]‍. Acta Metalluegica Sinica , 2017 , 53 10 : 1127 ‒ 1137 ‍.

[ 4 ] 梁新杰 , 杨俊英‍ . 生物医用材料的研究现状与发展趋势 [J]‍. 新材料产业 , 2016 2 : 2 ‒ 5 ‍.
Liang X J , Yang J Y‍ . Research status and development tendency of biomedical materials [J]‍. Advanced Materials Industry , 2016 2 : 2 ‒ 5 ‍.

[ 5 ] 李崇崇 , 王健 , 王春仁 , 等‍ . 低模量钛合金骨科植入物材料研究进展 [J]‍. 中国药事 , 2019 , 33 11 : 1310 ‒ 1314 ‍.
Li C C , Wang J , Wang C R , al e t ‍. On research progress of low modulus titanium alloy orthopedic pmplantmaterials [J]‍. Chinese Pharmaceutical Affairs , 2019 , 33 11 : 1310 ‒ 1314 ‍.

[ 6 ] Wang H, Song W, Liu M F, al et‍. Manufacture-friendly nanostructured metals stabilized by dual-phase honeycomb shell [J]‍. Nature Communications, 2022, 13: 2034‍.

[ 7 ] Chowdhury M A, HossainM D H, Hossain N, al et‍. Advances in coatings on Mg alloys and their anti-microbial activity for implant applications [J]‍. Arabian Journal of Chemistry, 2022, 15(11): 104214‍.

[ 8 ] Sánchez-Bodón J, del Olmo J A, Alonso J M, al et‍. Bioactive coatings on titanium: A review on hydroxylation, self-assembled monolayers (SAMs) and surface modification strategies [J]‍. Polymers, 2022, 14(1): 165‍.

[ 9 ] 麻西群 , 于振涛 , 牛金龙 , 等‍ . 新型生物医用钛合金的设计及应用进展 [J]‍. 有色金属材料与工程 , 2018 , 39 6 : 26 ‒ 31 ‍.
Ma X Q , Yu Z T , Niu J L , al e t ‍. Design and application progress of novel titanium alloys for biomedical application [J]‍. Non-ferrous Materials and Engineering , 2018 , 39 6 : 26 ‒ 31 ‍.

[10] Jawed S F, Rabadia C D, Khan M A, al et‍. Effect of alloying elements on the compressive mechanicalproperties of biomedical titanium alloys: A systematic review [J]‍. ACS Omega, 2022, 7(34): 29526-29542‍.

[11] V‍ Dobromyslov A. Bainitictransformations in titanium alloys [J]‍. Physics of Metals and Metallography, 2021, 122: 237‒265‍.

[12] Iijima Y, Nagase T, Matsugaki A, al et‍. Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropyalloys for metallic biomaterials [J]‍. Materials & Design, 2021, 202: 109548‍.

[13] Nagase T, Iijima Y, Matsugaki A, al et‍. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials [J]‍. Materials Science & Engineering: C, 2020, 107: 110322‍.

[14] Bayode B L, Teffo M L, Tayler T, al et‍. Structural, mechanical and electrochemical properties of spark plasma sintered Ti-30Ta alloys [J]‍. Materials Science and Engineering: B, 2022, 283: 115826‍.

[15] Xu S H, Du M, Li J, al et‍. Bio-mimic Ti-Ta composite with hierarchical "brick-and-mortar" microstructure [J]‍. Materialia, 2019, 8: 100463‍.

[16] Mahmoudi P, Akbarpour M R, Laken H B, al et‍. Antibacterial Ti-Cu implants: A critical review on mechanisms of action [J]‍. Materials Today Bio, 2022, 17: 100447‍.

[17] Zhuang Y F, Ren L, Zhang S Y, al et‍. Antibacterial effect of a copper-containing titanium alloy againstimplant-associated infection induced by methicillin-resistantstaphylococcus aureus [J]‍. Acta Biomaterialia, 2021, 119: 472‒484‍.

[18] 于佳莹 , 杨希祥 , 战德松 , 等‍ . Ti-Zr-Cu合金的抗菌性能和体外生物相容性 [J]‍. 材料研究学报 , 2021 , 35 11 : 873 ‒ 880 ‍.
Yu J Y , Yang X X , Zhan D S , al e t ‍. Antibacterial property and in vitro biocompatibility of a Ti-Zr-Cu alloy [J]‍. Chinese Journal of Materials Research , 2021 , 35 11 : 873 ‒ 880 ‍.

[19] 任玲 , 杨春光 , 杨柯‍ . 抗菌医用金属材料的研究与发展 [J]‍. 中国医疗设备 , 2017 , 32 1 : 1 ‒ 6 ‍.
Ren L , Yang C G , Yang K‍ . Research and development of antibacterial medical metal material [J]‍. China Medical Devices , 2017 , 32 1 : 21 ‒ 27 ‍.

[20] Williams D‍ . 二十一世纪生物材料定义 [M]‍. 赵晚露译‍. 北京 : 科学出版社 , 2021 ‍.
Williams D‍ . Definition of biomaterials for the 21st century [M]‍. Translated by Zhao W L‍. Beijing : Science Press , 2021 .

[21] 郑玉峰‍ . 可降解金属研究前沿进展 [EBOL]‍. 2022-10-13 [ 2022-12-05 ]‍. https:kns‍.‍cnki‍.‍netkcmsdetail23‍.‍1345‍.‍TB‍.20221013‍.0855‍.002‍.html‍ .
Zheng Y F‍ . Research frontier progress on biodegradable metals [EBOL]‍. 2022-10-13 ‍[ 2022-12-05 ]‍. https:kns‍.‍cnki‍.‍netkcmsdetail23‍.1345‍.TB‍.20221013‍.0855‍.002‍.html‍ . link1

[22] 王鲁宁 , 孟瑶 , 刘丽君 , 等‍ . 可降解锌基生物材料的研究进展 [J]‍. 金属学报 , 2017 , 53 10 : 1317 ‒ 1322 ‍.
Wang L N , Meng Y , Liu L J , al e t ‍. Research progress on biodegradable zinc-based biomaterials [J]‍. Acta Metalluegica Sinica , 2017 , 53 10 : 1317 ‒ 1322 ‍.

[23] 郑玉峰 , 杨宏韬‍ . 锌基可降解金属研究进展与展望 [J]‍. 天津理工大学学报 , 2021 , 37 1 : 58 ‒ 64 ‍.
Zheng Y F , Yang H T‍ . Research progress and prospects of zinc-based biodegradable metals [J]‍. Journal of Tianjin University of Technology , 2021 , 37 1 : 58 ‒ 64 ‍.

[24] 袁广银 , 牛佳林‍ . 可降解医用镁合金在骨修复应用中的研究进展 [J]‍. 金属学报 , 2017 , 53 10 : 1168 ‒ 1180 ‍.
Yuan G Y , Niu J L‍ . Research progress of biodegradable magnesium alloys for orthopedic applications [J]‍. Acta Metalluegica Sinica , 2017 , 53 10 : 1168 ‒ 1180 ‍.

[25] 东家慧 , 谭丽丽 , 杨柯‍ . 可降解镁基金属骨缺损修复材料的研究探索 [J]‍. 金属学报 , 2017 , 53 10 : 1197 ‒ 1206 ‍.
Dong J H , Tan L L , Yang K‍ . Research of biodegradable Mg-based metals as bone graft substitutes [J]‍. Acta Metalluegica Sinica , 2017 , 53 10 : 1197 ‒ 1206 ‍.

[26] 奚廷斐 , 魏利娜 , 刘婧 , 等‍ . 镁合金全降解血管支架研究进展 [J]‍. 金属学报 , 2017 , 53 10 : 1153 ‒ 1167 ‍.
Xi T F , Wei L N , Liu J , al e t ‍. Research progress in bioresorbablemagnesium scaffolds [J]‍. Acta Metalluegica Sinica , 2017 , 53 10 : 1153 ‒ 1167 ‍.

[27] 张小农 , 左敏超 , 张绍翔 , 等‍ . 医用可降解血管支架临床研究进展 [J]‍. 金属学报 , 2017 , 53 10 : 1117 ‒ 1126 ‍.
Zhang X N , Zuo M C , Zhang S X , al e t ‍. Advances in clinical research of biodegradable stents [J]‍. Acta Metalluegica Sinica , 2017 , 53 10 : 1117 ‒ 1126 ‍.

[28] Qin Y, Wen P, Guo H, al et‍. Additive manufacturing of biodegradable metals: Current research status and future perspectives [J]‍. Acta Biomaterialia, 2019, 98: 3‒22‍.

[29] Kaushik V, Nithish K B, Sakthi S, al et‍. Magnesium role in additive manufacturing of biomedical implants: Challenges and opportunities [J]‍. Additive Manufacturing, 2022, 55: 102802‍.

[30] Liu Y, Zheng Y F, Chen X H, al et‍. Fundamental theory of biodegradable metals-definition, criteria, and design [J]‍. Advanced Functional Materials, 2019, 29(18): 1805402‍.

[31] 关绍康 , 朱世杰 , 王利国 , 等‍ . 科技成果: 镁锌基合金的降解调控机制及生物功能化 [R]‍. 郑州 : 郑州大学 , 2020 ‍.
Guan S K , Zhu S J , Wang L G , al e t ‍. Science and technology achievement: Degradation mechanism and biofunctionalization of Mg-Zn based alloys [R]‍. Zhengzhou : Zhengzhou University , 2020 ‍.

[32] 关绍康 , 王俊 , 王利国 , 等‍ . 一种新型可生物降解血管支架用Mg-Zn-Y-Nd镁合金及其制备方法 : CN201110043303‍.8 [P]‍. 2011-10-15 ‍.
Guan S K , Wang J , Wang L G , al e t ‍. A novel biodegradable Mg-Zn-Y-Nd magnesium alloy for vascular stent and a preparation method : CN201110043303‍.8 [P]‍. 2011-10-15 ‍.

[33] Zhang J, Li H Y, Wang W, al et‍. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study [J]‍. Acta Biomaterialia, 2018, 69: 372‒384‍.

[34] Li G N, Yang H T, Zheng Y F, al et‍. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility [J]‍. Acta Biomaterialia, 2019, 97: 23‒45‍.

[35] 夏亚茹 , 何学斌 , 吕萍 , 等‍ . 生物可降解锌合金的最新研究进展 [J]‍. 中国铸造装备与技术 , 2022 , 57 3 : 5 ‒ 12 ‍.
Xia Y R , He X B , Lyu P , al e t ‍. The latest research progress of biodegradable zinc alloys [J]‍. China Foundry Machinery Technology , 2022 , 57 3 : 5 ‒ 12 ‍.

[36] Li H F, Shi Z Z, Wan L N‍. Opportunities and challenges of biodegradable Zn-based alloys [J]‍. Journal of Materials Science & Technology, 2020, 46: 136‒138‍.

[37] Yang H T, Jia B , Zhang Z C, al et‍. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]‍. Nature Communications, 2020, 11: 401‍.

[38] Shi Z Z, Gao X X, Chen H T, al et‍. Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement [J]‍. Materials Science and Engineering: C, 2020, 116: 111197‍.

[39] Su Y C, Fu J Y, Lee W, al et‍. Improved mechanical, degradation and biological performances of Zn-Fe alloys as bioresorbable implants [J]‍. Bioactive Materials, 2022, 17: 334‒343‍.

[40] Sun J, Zhang X, Shi Z Z, al et‍. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation [J]‍. Acta Biomaterialia, 2021, 119: 485‒498‍.

[41] Zhou C, Feng X Y, Shi Z Z, al et‍. Research on elastic recoil and restoration of vessel pulsatility of Zn-Cu biodegradable coronary stents [J]‍. Biomedical Engineering-Biomedizinische Technik, 2020, 65: 219‒227‍.

[42] 谢建新 , 宿彦京 , 薛德祯 , 等‍ . 机器学习在材料研发中的应用 [J]‍. 金属学报 , 2021 , 57 11 : 1343 ‒ 1361 ‍.
Xie J X , Su Y J , Xue D Z , al e t ‍. Machine learning for materials research and development [J]‍. Acta Metalluegica Sinica , 2021 , 57 11 : 1343 ‒ 1361 ‍.

[43] 郑玉峰 , 夏丹丹 , 谌雨农 , 等‍ . 增材制造可降解金属医用植入物 [J]‍. 金属学报 , 2021 , 57 11 : 1499 ‒ 1520 ‍.
Zheng Y F , Xia D D , Shen Y N , al e t ‍. Additively manufactured biodegrabable metal implants [J]‍. Acta Metalluegica Sinica , 2021 , 57 11 : 1499 ‒ 1520 ‍.

[44] 赵德伟 , 李军雷‍ . 多孔Ta的制备及其作为骨植入材料的应用进展 [J]‍. 金属学报 , 2017 , 53 10 : 1303 ‒ 1310 ‍.
Zhao D W , Li J L‍ . Fabrication of the porous tantalum and its current status used as orthopedics implants materials [J]‍. Acta Metalluegica Sinica , 2017 , 53 10 : 1303 ‒ 1310 ‍.

[45] Germaini M M, Belhabib S, Guessasma S, al et‍. Additive manufacturing of biomaterials for bone tissueengineering: A critical review of the state of the art andnew concepts [J]‍. Progress in Materials Science, 2022, 130: 100963‍.

[46] Davis R, Singh A, Jackson M J, al et‍. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing [J]‍. The International Journal of Advanced Manufacturing Technology, 2022, 120: 1473‒1530‍.

[47] Zhang D D, Peng F, Liu X Y‍. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating [J]‍. Journal of Alloys and Compounds, 2021, 853: 157010‍.

[48] Ma Y D, Yan J, Yan T T, al et‍. Biological properties of Cu-bearing and Ag-bearing titanium-based alloys and their surface modifications: A review of antibacterial aspect [J]‍. Frontiers in Materials, 2022, 9: 999794‍.

Related Research