Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 2 doi: 10.15302/J-SSCAE-2023.02.012

High-Level Layout Technology and Engineering Application for Advanced Air-Cooled Ultra-Supercritical Steam-Turbine Generator Unit

1. China Energy Investment Group Co., Ltd., Beijing 100011, China;
2. Northwest Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Xi’an 710075, China;
3. CHN Energy Jinjie Energy Co., Ltd., Yulin 719000, Shaanxi, China;
4. GD Power Development Co., Ltd., Beijing 100101, China;
5. CHN Energy New Energy Technology Research Institute Co., Ltd., Beijing 102209, China;
6. China Electric Power Planning and Engineering Institute, Beijing 100120, China;
7. China Energy Engineering Co., Ltd., Beijing 100022, China

Received: 2022-11-24 Revised: 2023-02-15 Available online: 2023-04-06

Next Previous

Abstract

Improving the power generation efficiency of coal-fired units is an effective measure to achieve energy conservation and carbon reduction. The engineering application of 700 ℃ ultra-supercritical coal-fired power generation is hindered by the high price of superalloy materials; therefore, it is necessary to explore new layouts and structures to shorten the high-temperature steam pipelines and reduce the engineering costs. By taking the phase III expansion project—the world’s first demonstration project of high-level layout—of the Jinjie coal-fired power plant as an example, this study introduces the engineering innovation practice of the high-level layout technology for an air-cooled ultra-supercritical steam-turbine generator unit. The results indicate that the reinforced concrete frame and shear wall structure can effectively lower the overall center of gravity and improve the seismic performance of the main power house,thereby ensuring the safety of the main power house structure, high-temperature steam pipelines, and steam turbine generator unit through technological breakthroughs. Compared with those of the conventional layout (its operating floor level being 12.6‒17 m), the main steam and reheat steam pipelines of the high-level layout (its operating floor level being 65 m) can save 34.2% and 20.9% of raw materials,respectively; and exhaust steam pipes of the air-cooled island can save 93% of raw materials. Furthermore, the power supply coal consumption can be reduced by 4.5‒5.1 g/(kW·h) compared with the design value, and the overall economical efficiency is significantly improved. The monitoring data after operation show that all parameters in the real-time on-line monitoring system of the main power house structure are within the safety threshold, and the plant structure and critical equipment are both in a safe state. Therefore, we propose to promote clean and efficient coal-fired power generation technologies and apply the high-level layout technology to the advanced air-cooled coal-fired power units in northeast, north, and northwest China as these regions are rich in coal but short of water. This can provide practical experience for the construction of economical high-temperature steam pipelines for 700 ℃ ultra-supercritical coal-fired power units.

Figures

图1

图2

图3

图4

图5

图6

图7

References

[ 1 ] 谢克昌‍‍ . 推动能源生产和消费革命战略研究 [M]‍. 北京 : 科学出版社 , 2017 ‍.
Xie K C‍ . Strategic research on promoting energy production and consumption revolution [M]‍. Beijing : Science Press‍ , 2017 ‍.

[ 2 ] 王树民 , 宋畅 , 陈寅彪 , 等‍ . 燃煤电厂大气污染物"近零排放"技术研究及工程应用 [J]‍. 环境科学研究 , 2015 , 28 4 : 487 ‒ 494 ‍.
Wang S M , Song C , Chen Y B , al e t ‍. Technology research and engineering applications of near-zero air pollutant emission coal-fired power plants [J]‍. Research of Environmental Sciences , 2015 , 28 4 : 487 ‒ 494 ‍.

[ 3 ] 王树民 , 张翼 , 刘吉臻‍ . 燃煤电厂细颗粒物控制技术集成应用及"近零排放"特性 [J]‍. 环境科学研究 , 2016 , 29 9 : 1256 ‒ 1263 ‍.
Wang S M , Zhang Y , Liu J Z‍ . Integrated application of fine particulate matter control technologies and their "near-zero emission" characteristics in coal-fired power plants [J]‍. Research of Environmental Sciences , 2016 , 29 9 : 1256 ‒ 1263 ‍.

[ 4 ] 王树民 , 余学海 , 顾永正 , 等‍ . 基于燃煤电厂"近零排放"的大气污染物排放限值探讨 [J]‍. 环境科学研究 , 2018 , 31 6 : 975 ‒ 984 ‍.
Wang S M , Yu X H , Gu Y Z , al e t ‍. Discussion of emission limits of air pollutants for "near-zero emission" coal-fired power plants [J]‍. Research of Environmental Sciences , 2018 , 31 6 : 975 ‒ 984 ‍.

[ 5 ] Wang S M‍. Near-zero air pollutant emission technologies and applications for clean coal-fired power [J]‍. Engineering, 2020, 6(12): 1408‒1422‍.

[ 6 ] 中国电力企业联合会‍ . 中国电力行业年度发展报告2022 [R]‍. 北京 : 中国电力企业联合会 , 2022 ‍.
China Electricity Council‍ . China power industry annual development report 2022 [R]‍. Beijing : China Electricity Council , 2022 ‍.

[ 7 ] 张玉卓‍ . 中国清洁能源的战略研究及发展对策 [J]‍. 中国科学院院刊 , 2014 , 29 4 : 429 ‒ 436 ‍.
Zhang Y Z‍ . Study on strategy and development countermeasure of China clean energy [J]‍. Bulletin of Chinese Academy of Sciences , 2014 , 29 4 : 429 ‒ 436 ‍.

[ 8 ] 舒印彪 , 谢典 , 赵良 , 等‍ . 碳中和目标下我国再电气化研究 [J]‍. 中国工程科学 , 2022 , 24 3 : 195 ‒ 204 ‍.
Shu Y B , Xie D , Zhao L , al e t ‍. Re-electrification in China under the carbon neutrality goal [J]‍. Strategic Study of CAE , 2022 , 24 3 : 195 ‒ 204 ‍.

[ 9 ] 黄其励 , 袁晴棠 , 韩涛‍ . 能源生产革命的若干问题研究 [J]‍. 中国工程科学 , 2015 , 17 9 : 105 ‒ 110 ‍.
Huang Q L , Yuan Q T , Han T‍ . Study on several issues of energy production revolution [J]‍. Strategic Study of CAE , 2015 , 17 9 : 105 ‒ 110 ‍.

[10] Bugge J, Kjaer S, Blum R‍. High-efficiency coal-fired power plants development and perspectives [J]‍. Energy, 2006, 31(10‒11): 1437‒1445‍.

[11] M‍ Beér J. High efficiency electric power generation: The environmental role [J]‍. Progress in Energy and Combustion Science, 2007, 33(2): 107‒134‍.

[12] 杨华春 , 林富生 , 谢锡善 , 等‍ . 欧洲700 ℃发电机组研发及617合金研究进展 [J]‍. 发电设备 , 2012 , 26 5 : 355 ‒ 359 ‍.
Yang H C , Lin F S , Xie X S , al e t ‍. R D progress of 700 ℃ power generation technology and alloy 617 in Europe [J]‍. Power Equipment , 2012 , 26 5 : 355 ‒ 359 ‍.

[13] 刘入维 , 肖平 , 钟犁 , 等‍ . 700 ℃超超临界燃煤发电技术研究现状 [J]‍. 热力发电 , 2017 , 46 9 : 1 ‒ 7 ‍.
Liu R W , Xiao P , Zhong L , al e t ‍. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]‍. Thermal Power Generation , 2017 , 46 9 : 1 ‒ 7 .

[14] 王旭阳 , 吴玉华 , 侯栋楠 , 等‍ . 700 ℃高超临界二次再热机组抽汽参数计算及分析 [J]‍. 汽轮机技术 , 2018 , 60 5 : 368 ‒ 370 ‍.
Wang X Y , Wu Y H , Hou D N , al e t ‍. Calculation and analysis of extraction steam parameters of the 700 ℃ ultra-supercritical units with double-reheat cycle [J]‍. Turbine Technology , 2018 , 60 5 : 368 ‒ 370 ‍.

[15] 杨美 , 周云龙 , 杨金福 , 等‍ . 700 ℃超超临界一次再热发电系统优化 [J]‍. 发电技术 , 2021 , 42 4 : 509 ‒ 516 ‍.
Yang M , Zhou Y L , Yang J F , al e t ‍. Optimization of 700 ℃ ultra-supercritical single reheat power generation system [J]‍. Power Generation Technology , 2021 , 42 4 : 509 ‒ 516 ‍.

[16] 徐炯 , 周一工‍ . 700 ℃高效超超临界火力发电技术发展的概述 [J]‍. 上海电气技术 , 2012 , 5 2 : 50 ‒ 54 ‍.
Xu J , Zhou Y G‍ . Overview of the development of 700 ℃ USC technique [J]‍. Journal of Shanghai Electric Technology , 2012 , 5 2 : 50 ‒ 54 ‍.

[17] 赵子龙 , 李生志 , 马翔 , 等‍ . 700 ℃超超临界机组主蒸汽管道候选材料特性与服役性能研究现状 [J]‍. 热力发电 , 2021 , 50 11 : 1 ‒ 12 ‍.
Zhao Z L , Li S Z , Ma X , al e t ‍. Research status of main steam pipe candidate material characteristics and service performance for 700 ℃ ultra supercritical unit [J]‍. Thermal Power Generation , 2021 , 50 11 : 1 ‒ 12 ‍.

[18] Kloss-Grote B, Wechsung M, Quinkertz R, al et‍. Advanced steam turbine technology for unique double reheat steam power plant layout [C]‍. New York: ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2019‍.

[19] 王树民 , 宋畅 , 张满平 , 等‍ . 汽轮发电机组高位布置技术研究与工程设计 [J]‍. 中国电机工程学报 , 2020 , 40 23 : 7643 ‒ 7652 ‍.
Wang S M , Song C , Zhang M P , al e t ‍. Research and engineering design of high level layout of turbine generator unit [J]‍. Proceedings of the CSEE , 2020 , 40 23 : 7643 ‒ 7652 ‍.

[20] 孙锐 , 柴靖宇 , 王盾‍ . 一种直接空冷汽轮发电机组系统 : CN201120170471‍.9 [P]‍. 2012-01-04 ‍.
Sun R , Chai J Y , Wang D‍ . A direct air-cooled steam turbine unit system : CN201120170471‍.9 [P]‍. 2012-01-04 ‍.

[21] 王树民 , 吕智强 , 宋畅 , 等‍ . 汽轮发电机组高位布置基础振动试验研究 [J]‍. 中国电机工程学报 , 2021 , 41 12 : 4217 ‒ 4226 ‍.
Wang S M , Lyu Z Q , Song C , al e t ‍. Vibration test research of steam turbine generator foundation jointly configured on higher floor [J]‍. Proceedings of the CSEE , 2021 , 41 12 : 4217 ‒ 4226 ‍.

[22] 冯伟忠‍ . 一种高低位布置的高温亚临界机组 : CN201320548936‍.9 [P]‍. 2014-04-16 ‍.
Feng W Z‍ . A high temperature subcritical unit with high and low position arrangement CN201320548936‍.9 [P]‍. 2014-04-16 ‍.

[23] 张伟江 , 焦林生 , 薛应科 , 等‍ . 高位布置汽轮发电机组试运中的稳定性测试与分析 [J]‍. 汽轮机技术 , 2022 , 64 1 : 46 ‒ 48 ‍.
Zhang W J , Jiao L S , Xue Y K , al e t ‍. Test and analysis of stability for high level layout of 660 MW turbine generator unit during trial operation period [J]‍. Turbine Technology , 2022 , 64 1 : 46 ‒ 48 ‍.

[24] 刘彦辉 , 谭平 , 周福霖 , 等‍ . 高层框架 ‒ 剪力墙隔震结构地震响应研究 [J]‍. 工程力学 , 2015 , 32 3 : 134 ‒ 139 ‍.
Liu Y H , Tang P , Zhou F L , al e t ‍. Study of seismic response in isolated high-rise frame-shear wall structures during earthquakes [J]‍. Engineering Mechanics , 2015 , 32 3 : 134 ‒ 139 ‍.

[25] 白国良 , 秦朝刚 , 徐亚洲 , 等‍ . 装配整体式剪力墙模型结构振动台试验研究 [J]‍. 建筑结构学报 , 2018 , 39 2 : 17 ‒ 27 ‍.
Bai G L , Qin C G , Xu Y Z , al e t ‍. Shaking table test on monolithic precast concrete shear wall model structure [J]‍. Journal of Building Structures , 2018 , 39 2 : 17 ‒ 27 ‍.

[26] 辛世岗‍ . 火力发电机组直接空冷系统研究 [J]‍. 能源与节能 , 2012 8 : 119 ‒ 120, ‍.
Xin S G‍ . Research on the direct air-cooled condenser system of power plants [J]‍. Energy and Energy Conservation , 2012 8 : 119 ‒ 120 ‍.

[27] 张伟江 , 李宁 , 李辉 , 等‍ . 高位布置汽轮发电机组基础台板动力学特性研究 [JOL]‍. 中国测试 : 1 ‒ 5 2022-03-20 [ 2022-06-25 ]‍. http:kns‍.cnki‍.netkcmsdetail51‍.1714‍.TB‍.20220318‍.1236‍.004‍.html‍ .
Zhang W J , Li N , Li H , al e t ‍. Dynamic characteristics of steam turbine generator unit foundation with high level layout [JOL]‍. China Measurement Test : 1 ‒ 5 2022-03-20 [ 2022-06-25 ]‍. http:kns‍.cnki‍.netkcmsdetail51‍.1714‍.TB‍.20220318‍.1236‍.004‍.html‍ . link1

Related Research