Application Status and Prospect of Ammonia Energy

Ruisheng Yong, Chuanruo Yang, Ming Xue, Fan Nie, Xinglei Zhao

Strategic Study of CAE ›› 2023, Vol. 25 ›› Issue (2) : 111-121.

PDF(3099 KB)
PDF(3099 KB)
Strategic Study of CAE ›› 2023, Vol. 25 ›› Issue (2) : 111-121. DOI: 10.15302/J-SSCAE-2023.02.014
Energy Transformation and Power Supply Security
Orginal Article

Application Status and Prospect of Ammonia Energy

Author information +
History +

Abstract

Ammonia energy can be potentially used for substituting fossil energies and it has a close relationship with renewable energy sources; therefore, promoting the application of ammonia energy is expected to enable China to achieve a certain degree of energy independence, which is significant for the future development of energies. In this study, the strategic significance in developing ammonia energy is analyzed from the perspectives of its energy-storage and fuel properties and basic industrial conditions. The ammonia energy application status is reviewed from four aspects: ammonia internal combustion engines, ammonia gas turbines, ammonia-burning boilers, and ammonia-hydrogen fuel cells. Moreover, the status quo of the synthetic ammonia industry, development trend of the ammonia energy industry, and development plans of the industry in China and abroad are examined. Furthermore, we suggest that the ammonia energy industry in China should be promoted steadily by stages. First, the research on novel green ammonia synthesis technologies should be strengthened, laws/regulations and carbon market mechanisms should be improved, and green ammonia demonstration projects should be implemented. Second, an ammonia energy technology system with independent intellectual property rights should be established, and a low-cost ammonia energy supply chain and a high-efficiency ammonia energy utilization chain should be built to achieve large-scale promotion of the energy. Third, the ammonia energy industrial structure should be reshaped according to a green circular economy route that integrates green production, economical transportation, and carbon-free application of ammonia, thereby supporting the carbon peaking and carbon neutralization goals.

Keywords

zero-carbon fuel / ammonia energy / energy storage / combustion

Cite this article

Download citation ▾
Ruisheng Yong, Chuanruo Yang, Ming Xue, Fan Nie, Xinglei Zhao. Application Status and Prospect of Ammonia Energy. Strategic Study of CAE, 2023, 25(2): 111‒121 https://doi.org/10.15302/J-SSCAE-2023.02.014

References

[[1]]
Ratnakar R, Gupta N, Zhang K, al et‍. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation [J]‍. International Journal of Hydrogen Energy, 2021 (47): 24149‒24168‍.
[[2]]
Giddey S, Badwal S P S, Munnings C, al et‍. Ammonia as a renewable energy transportation media [J]‍. ACS Sustainable Chemistry & Engineering, 2017 (11): 10231‒10239‍.
[[3]]
Valera-Medina A, Xiao H, Owen-Jones, al et‍. Ammonia for power [J]‍. Progress in Energy and Combustion Science, 2018 (69): 63‒102‍.
[[4]]
Xu X, Liu E, Zhu N, al et‍. Review of the current status of ammonia-blended hydrogen fuel engine development [J]‍. Energies, 2022 (3): 1023‍.
[[5]]
吴全 , 沈珏新 , 余磊 , 等‍ . " 双碳"背景下氢 ‒ 氨储运技术与经济性浅析 [J]‍. 油气与新能源 , 2022 , 34 5 : 27 ‒ 33 .
[[6]]
Luo Y, Shi Y X, Liao S T, al et‍. Coupling ammonia catalytic decomposition and electrochemical oxidation for solid oxide fuel cells: A model based on elementary reaction kinetics [J]‍. Journal of Power Sources, 2019, 423: 125‒136‍.
[[7]]
International Energy Agency‍. World energy outlook 2020: Part of world energy outlook [R]‍. Paris: International Energy Agency, 2020.
[[8]]
蒲亮 , 余海帅 , 代明昊 , 等‍ . 氢的高压与液化储运研究及应用进展 [J]‍. 科学通报 , 2022 , 67 19 : 2172 ‒ 2191 ‍.
[[9]]
Lin L, Tian Y, Su W B, al et‍. Techno-economic analysis and comprehensive optimization of an on-site hydrogen refuelling station system using ammonia: Hybrid hydrogen purification with both high H2 purity and high recovery [J]‍. Sustain Energy Fuels, 2020, 4(6): 3006‒3017‍.
[[10]]
Jiang L L, Fu X Z‍. An Ammonia‍-‍hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China [J]‍. Engineering, 2021, 7(12): 1688‒1691‍.
[[11]]
Wang X, Peng X, Chen W, al et‍. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst [J]‍. Nature Communicaton, 2020, 11(1): 653‍.
[[12]]
吴迪‍ . 氨泄漏扩散风险分析与控制策略研究 [D]‍. 青岛 : 中国石油大学华东硕士学位论文 , 2019 ‍.
[[13]]
张鑫 , 陆阳 , 程迪 , 等‍‍ . 氨燃料吸气式变循环发动机性能分析 [J]‍. 力学学报 , 2022 , 54 11 : 3223 ‒ 3237 ‍.
[[14]]
滕梓源 , 韩敏芳‍ . 碳中和愿景下采用氨作替代燃料相关技术热点分析 [J]‍. 中外能源 , 2022 , 27 9 : 16 ‒ 22 ‍.
[[15]]
高正平 , 涂安琪 , 李天新 , 等‍ . 面向零碳电力的氨燃烧技术研究进展 [J]‍. 洁净煤技术 , 2022 , 28 3 : 173 ‒ 184 ‍.
[[16]]
Humphreys J, Lan R, Tao S‍. Development and recent progress on ammonia synthesis catalysts for Haber-Bosch process [J]‍. Advanced Energy and Sustainability Research, 2021 (1): 2000043‍.
[[17]]
谭厚章 , 周上坤 , 杨文俊 , 等‍ . 氨燃料经济性分析及煤氨混燃研究进展 [J]‍. 中国电机工程学报 , 2023 , 43 1 : 181 ‒ 191 ‍.
[[18]]
Jiang L L, Fu X Z‍. An ammonia‍-‍hydrogen energy road map for carbon neutrality: Opportunity and challenges in China [J]‍. Engineering, 2021, 7(21): 1688‒1691‍.
[[19]]
国家发展改革委员会 , 国家能源局‍ . " 十四五"新型储能发展实施方案 [EBOL]‍. 2022-01-29 [ 2023-01-03 ]‍. http:zfxxgk‍.nea‍.gov‍.cn2022-0129c_1310523208‍.htm‍ .
[[20]]
熊亚林 , 刘玮 , 高鹏博 , 等‍ . " 双碳"目标下氢能在我国合成氨行业的需求与减碳路径研究 [JOL]‍. 储能科学与技术 : 1 - 13 [ 2022-10-25 ]‍. http:doi: 10‍.19799j‍.cnki‍.2095-4239‍.2022‍.0364‍ .
[[21]]
Wang B, Ni M, Jiao K‍. Green ammonia as a fuel [J]‍. Science Bulletin, 2022, 67(15): 1530‒1534‍.
[[22]]
郭朋彦 , 申方 , 王丽君 , 等‍ . 氨燃料发动机研究现状及发展趋势 [J]‍. 车用发动机 , 2016 3 : 1 ‒ 5 ‍.
[[23]]
汪鑫 , 陈钧 , 范卫东‍ . 燃煤电站锅炉掺氨燃烧与排放特性综述 [J]‍. 洁净煤技术 , 2022 , 28 8 : 25 ‒ 34 ‍.
[[24]]
王闻昊 , 丛威‍ . 国际能源署全球能源行业2050年净零排放路线图评析 [J]‍. 国际石油经济 , 2021 , 29 6 : 1 ‒ 7 ‍.
[[25]]
赵志坚 , 崔维洁 , 祁蹟‍ . 航运能源转型下的各种船用动力燃料前景展望 [J]‍. 中国远洋海运 , 2022 6 : 42 ‒ 48 ‍.
[[26]]
王远 , 赵金文 , 潘志远 , 等‍ . 氨燃料在大型油船上的应用前景 [J]‍. 船舶工程 , 2022 , 44 8 : 84 ‒ 89 ‍.
[[27]]
卢晨‍ . 上船院氨燃料动力7000车位汽车运输船获得挪威船级社原则性认可 [J]‍. 船舶设计通讯 , 2022 1 : 65 ‍.
[[28]]
Stolz B, Held M, Georges G, al et‍. Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe [J]‍. Nature Energy, 2022, 7(2): 203‒212‍.
[[29]]
Kurata O, Iki N, Matsunuma T, al et‍. Performances and emission characteristics of NH3-air and NH3-CH4-air combustion gas-turbine power generations [J]‍. Proceedings of the Combustion Institute, 2017, 36(3): 3351‒3359‍.
[[30]]
C‍ IHI. IHI becomes world´s first to attain 70% liquid ammonia co-firing ratio on 2000-kilowatt-class gas turbine [EB/OL]‍.(2021-12-20)‍[2022-10-25]‍.http://www‍.ihi‍.co‍.jp/en/all_news/2020/resources_energy_environment/1197060_2032‍.html‍.
[[31]]
李俊彪 , 王明华‍ . 基于不同情景模式的燃煤掺氨发电技术的经济性分析 [J]‍. 中国煤炭 , 2022 , 48 5 : 54 ‒ 59 ‍.
[[32]]
丁先 , 李汪繁 , 马达夫‍ . 燃煤机组耦合氨燃料燃烧特性及经济性探讨 [J]‍. 热力发电 , 2022 , 51 8 : 20 ‒ 28 ‍.
[[33]]
Ishii H, Ohno E, Kozaki T, al et‍. Development of co-firing technology of pulverized coal and ammonia for suppressing the NOx generation [J]‍. Transaction of the JSME (in Japanese), 2020, 86(883): 19‒00363‍.
[[34]]
汪芳 , 陈秋远‍ . 皖能铜陵发电公司: 国内首创8‍.3兆瓦纯氨燃烧器在30万千瓦火电机组点火成功 [J]‍. 中国电力企业管理 , 2022 12 : 96 ‍.
[[35]]
牛涛 , 张文振 , 刘欣 , 等‍ . 燃煤锅炉氨煤混合燃烧工业尺度试验研究 [J]‍. 洁净煤技术 , 2022 , 28 3 : 193 ‒ 200 ‍.
[[36]]
徐静颖 , 朱鸿玮 , 徐义书 , 等‍ . 燃煤电站锅炉氨燃烧研究进展及展望 [J]‍. 华中科技大学学报自然科学版 , 2022 , 50 7 : 55 ‒ 65 ‍.
[[37]]
Afif A, Radenahmad N, Cheok Q, al et‍. Ammonia-fed fuel cells: A comprehensive review [J]‍. Renewable Sustainable Energy Review, 2016, 60: 822‒835‍.
[[38]]
Afif A, Radenahmad N, Cheok Q, al et‍. Ammonia-fed fuel cells: A comprehensive review [J]‍. Renewable and Sustainable Energy Reviews, 2016, 60: 822‒835‍.
[[39]]
World Integrate Trade Solution‍. Ammonia anhydrous exports by country 2019 [EB/OL]‍. (2021-10-07)[2022-10-25]‍. https://wits‍.worldbank‍.org/trade/comtrade/en/country/ALL/year/2019/tradeflow/Exports/partner/WLD/product/281410#L1‍.
[[40]]
Zhao H, Kamp L M, Lukszo Z‍. Exploring supply chain design and expansion planning of China´s green ammonia production with an optimization-based simulation approach [J]‍. International Journal of Hydrogen Energy, 2021, 46(64): 32331‒32349‍.
[[41]]
李育磊 , 刘玮 , 董斌琦 , 等‍ . 双碳目标下中国绿氢合成氨发展基础与路线 [J]‍. 储能科学与技术 , 2022 , 11 9 : 2891 ‒ 2899 ‍.
[[42]]
许焕焕 , 葛一 , 李强 , 等‍ . 氨燃料及应用技术研究进展 [J]‍. 东北电力大学学报 , 2022 , 42 2 : 1 ‒ 13 ‍.
[[43]]
邓战听‍ . 合成氨工艺技术的应用现状及其未来发展趋势 [J]‍. 中国化工贸易 , 2020 , 12 13 : 63 ‒ 66 ‍.
[[44]]
Wang L, Xia M K, Wang H, al et‍. Greening ammonia toward the solar ammonia refinery [J]‍. Joule, 2018, 2(6): 1055‒1074‍.
[[45]]
Wang Q, Guo J, Chen P‍. Recent progress towards mild-condition ammonia synthesis [J]‍. Journal of Energy Chemistry, 2019, 36: 25‒36‍.
[[46]]
Wang X, Peng X, Chen W, al et‍. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst [J]‍. Nature Communicaton, 2020, 11(1): 653‍.
[[47]]
Zhao F, Fan Y, Zhang S, al et‍. Exploring pathways to deep de-carbonization and the associated environmental impact in China´s ammonia industry [J]‍. Environmental Research Letters, 2022, 17(4): 045029‍.
[[48]]
任怡静‍ . 我国合成氨行业碳减排潜力研究 [D]‍. 北京 : 北京化工大学硕士学位论文 , 2015 ‍.
[[49]]
国家发展和改革委员会 , 国家能源局‍ . 合成氨行业节能降碳改造升级实施指南 [R]‍. 北京 : 国家发展和改革委员会, 国家能源局 , 2022 ‍.
[[50]]
Hank C, Sternberg A, Köppel N, al et‍. Energy efficiency and economic assessment of imported energy carriers based on renewable electricity [J]‍. Sustain Energy & Fuels, 2020, 4(5): 2256‒2273‍.
[[51]]
Machaj K, Kupecki J, Malecha Z, al et‍. Ammonia as a potential marine fuel: A review [J]‍. Energy Strategy Reviews, 2022, 44: 100926‍.
[[52]]
滕霖 , 尹鹏博 , 聂超飞 , 等‍ . " 氨 ‒ 氢"绿色能源路线及液氨储运技术研究进展 [J]‍. 油气储运 , 2022 , 41 10 : 1115 ‒ 1129 ‍.
[[53]]
辛尚吉‍ . 绿氨 ‒ 能源巨头的新追求 [J]‍. 中国石油和化工产业观察 , 2022 9 : 84 ‍.
[[54]]
刘丁‍ . 在日本, 氨能正在抢氢能的风头 [J]‍. 中国石油和化工产业观察 , 2022 Z 1 : 107 ‒ 108 ‍.
[[55]]
舟丹‍ . 世界各国政府相继发展氨产业 [J]‍. 中外能源 , 2022 , 27 9 : 89 ‍.
[[56]]
Dawood F, Shafiullah G M, Anda M‍. A hover view over Australia´s hydrogen industry in recent history: The necessity for a hydrogen industry knowledge-sharing platform [J]‍. International Journal of Hydrogen Energy, 2020, 45(58): 32916‒32939‍.
[[57]]
International Energy Agency‍. Hydrogen in North-Western Europe[EB/OL]‍. ‍(2021-08-07)[2022-11-13]‍. https://energycentral‍.com/c/cp/hydrogen-north-western-europe-%E2%80%93-analysis-iea‍.
[[58]]
吉旭 , 周步祥 , 贺革 , 等‍ . 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展 [J]‍. 工程科学与技术 , 2022 , 54 5 : 1 ‒ 11 ‍.
[[59]]
国家发展改革委员会 , 国家能源局‍ . " 十四五"新型储能发展实施方案 [EBOL]‍. 2022-2-10 [ 2022-11-13 ]‍. https:www‍.ndrc‍.gov‍.cnxxgkzcfbtz202203t20220321_1319772‍.html?code=state=123‍ .
[[60]]
刘伟 , 王琮 , 郭娅 , 等‍ . 氨燃料在船舶行业应用及标准需求研究 [J]‍. 中国标准化 , 2021 18 : 39 ‒ 43 ‍.
[[61]]
黄尊礼‍ . SDARI、ABS和MAN共同签订氨燃料支线集装箱船合作开发协议 [J]‍. 船舶设计通讯 , 2019 2 : 99 ‍.
[[62]]
赵晓飞 , 杨晓宇 , 刘雅文‍ . 合成氨行业节能降碳改造怎么做?——访中国氮肥工业协会会长顾宗勤 [J]‍. 中国石油和化工 , 2022 5 : 20 ‒ 22 ‍.
[[63]]
Kyriakou V, Garagounis I, Vourros A, al et‍. An electrochemical Haber-Bosch process [J]‍. Joule, 2020, 4(1): 142‒158‍.
[[64]]
Nayak-Luke R M, Bañares-Alcántara R‍. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production [J]‍. Energy & Environmental Science, 2020, 13(9): 2957‒2966‍.
AI Summary AI Mindmap
PDF(3099 KB)

Accesses

Citations

Detail

Sections
Recommended

/