Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 5 doi: 10.15302/J-SSCAE-2023.05.011

Dynamic Carbon Neutrality Mode for Coal-Based Energy Systems and Effectiveness Assessment Thereof

1. School of Mechanical and Electrical Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China;

2. School of Energy and Mining Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

Funding project:Chinese Academy of Engineering project “Research on the Scientific System and Strategic Path of Carbon Neutral Development in China’s Coal Industry” (2022-XBZD-09), “Research on China’s Energy Security Strategy” (2022-JB-05), “Strategic Research on Promoting the Construction of Energy Power” (2022-XBZD-10) Received: 2023-09-11 Revised: 2023-10-15 Available online: 2023-11-02

Next Previous

Abstract

The conventional energy-transition pathway, that is, reducing coal, increasing gas, and developing renewable energies, cannot fully satisfy the requirement of China for energy security under the new situation. Creating a novel dynamic carbon neutrality mode for coal-based energy systems is a forward-looking development approach to solving the problem of high carbon emissions and ensuring national energy security. This study summarizes the international energy transition modes and analyzes the urgency and importance of developing a low-carbon coal-based energy system in response to the challenges of energy security and emissions reduction. Moreover, it clarifies the scientific intension, establishes a system framework, and discloses the security guarantee and emissions reduction mechanisms of the dynamic carbon neutrality mode for coal-based energy systems. An effectiveness assessment model based on system dynamics is established to assess the effectiveness of the mode in terms of energy security, emission reduction,and social development. The results indicate that compared to the conventional coal-fueled systems, the coal-based energy system can potentially reduce carbon emissions by 46% to 55% and external dependence on oil and gas to be below 20% in 2060 under different scenarios; the carbon emissions can be reduced by 84% using the dynamic carbon neutrality mode and the carbon capture and storage technology, and is expected to be further lowered owing to the carbon capture, utilization, and storage technology and carbon sinks in mining areas. Coal-based energy development and application can serve as a strategic technology for oil and gas reserves, thereby ensuring energy security. However, China still faces a significant oil and gas gap before 2030, and thus the development of the coalbased energy is urgent. Furthermore, we propose that a novel coal-based energy system supported by dynamic carbon neutrality technologies should be built to achieve energy independence and security as well as achieve the carbon peaking and carbon neutrality goals. Coal underground gasification, tar-rich coal utilization, and coalbed gas development technologies should be regarded as a potential technology portfolio in the short and medium term and the coal in-situ fluidization mining technology could be a long-term choice.

Figures

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

References

[ 1 ] 杨宇 , 夏四友 , 钱肖颖‍ . 能源转型的地缘政治研究 [J]‍. 地理学报 , 2022 , 77 8 : 2050 ‒ 2066 ‍.
Yang Y , Xia S Y , Qian X Y‍ . Geopolitics of the energy transition [J]‍. Acta Geographica Sinica , 2022 , 77 8 : 2050 ‒ 2066 ‍.

[ 2 ] Iakubovskii D, Krupenev D, Komendantova N, al et‍. A model for power shortage minimization in electric power systems given constraints on controlled sections [J]. Energy Reports, 2021, 7: 4577‒4586.

[ 3 ] 王江 , 张翔‍ . 可持续能源转型: 模型构建与分析 [J]‍. 中国人口·资源与环境 , 2020 , 30 3 : 74 ‒ 82 ‍.
Wang J , Zhang X‍ . Modelling sustainable energy transitions [J]‍. China Population , Resources and Environment, 2020 , 30 3 : 74 ‒ 82 ‍.

[ 4 ] 顾永正‍ . 煤基能源碳捕集利用与封存技术研究进展 [J]‍. 现代化工 , 2023 , 43 9 : 38 ‒ 41, 46 ‍.
Gu Y Z‍ . Research progress on carbon dioxide capture, utilization and storage technology for coal-based energy industry [J]‍. Modern Chemical Industry , 2023 , 43 9 : 38 ‒ 41, 46 ‍.

[ 5 ] 张宁 , 薛美美 , 吴潇雨 , 等‍ . 国内外能源转型比较与启示 [J]‍. 中国电力 , 2021 , 54 2 : 113 ‒ 119, 155 ‍.
Zhang N , Xue M M , Wu X Y , al e t ‍. Comparison and enlightenment of energy transition between domestic and international [J]‍. Electric Power , 2021 , 54 2 : 113 ‒ 119, 155 ‍.

[ 6 ] 张涛 , 姜大霖‍ . 碳达峰碳中和目标下煤基能源产业转型发展 [J]‍. 煤炭经济研究 , 2021 , 41 10 : 44 ‒ 49 ‍.
Zhang T , Jiang D L‍ . Transformation and development of coal based energy industry under the goal of carbon peaking and carbon neutrality [J]‍. Coal Economic and Research , 2021 , 41 10 : 44 ‒ 49 ‍.

[ 7 ] 张磊 , 张俊杰 , 王顺森 , 等‍ . 煤基分布式能源技术研究与经济性分析 [J]‍. 节能技术 , 2021 , 39 5 : 403 ‒ 406, 412 ‍.
Zhang L , Zhang J J , Wang S S , al e t ‍. Coal-based distributed energy technology research and economic analysis [J]‍. Energy Conservation Technology , 2021 , 39 5 : 403 ‒ 406, 412 ‍.

[ 8 ] Wang C, He B, Yan L, al et‍. Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant [J]‍. Energy, 2014, 65: 80‒90‍.

[ 9 ] 张宏‍ . 推动"双碳"战略实施构建煤炭产业发展新格局 [J]‍. 中国煤炭 , 2022 , 48 2 : 1 ‒ 4 ‍.
Zhang H‍ . Research on promoting the strategy implementation of carbon peak and carbon neutrality and building a new pattern of coal industry development [J]‍. China Coal , 2022 , 48 2 : 1 ‒ 4 ‍.

[10] 谭杰‍ . 煤炭矿区生态修复发展现状及问题探讨 [J]‍. 能源环境保护 , 2018 , 32 5 : 45 ‒ 47 ‍.
Tan J‍ . Discussion on current situation and problems of ecological remediation in coal mining area [J]‍. Energy Environmental Protection , 2018 , 32 5 : 45 ‒ 47 ‍.

[11] 王其藩‍ . 系统动力学 [M]‍. 上海 : 上海财经大学出版社 , 2009 ‍.
Wang Q F‍ . System dynamic [M]‍. Shanghai : Shanghai University of Finance Economics Press , 2009 ‍.

[12] 彭生江 , 杨淑霞 , 袁铁江‍ . 面向风煤富集区域的风 ‒ 氢 ‒ 煤耦合系统演化发展系统动力学 [J]‍. 高电压技术 , 2023 , 49 8 : 3478 ‒ 3489 ‍.
Peng S J , Yang S X , Yuan T J‍ . System dynamics of the evolutionary development of coupled wind-hydrogen-coal system for wind-coal enriched areas [J]‍. High Voltage Engineering , 2023 , 49 8 : 3478 ‒ 3489 ‍.

[13] 杜振东 , 徐尔丰 , 张笑弟 , 等‍ . 绿色电力证书市场下中国各类电源规模及发电成本演化发展 [J]‍. 中国电力 , 2019 , 52 7 : 168 ‒ 176 ‍.
Du Z D , Xu E F , Zhang X D , al e t ‍. Research on evolution and development of power generation scale and cost under tradable green certificates market in China [J]‍. Electric Power , 2019 , 52 7 : 168 ‒ 176 ‍.

[14] Yang Q, Zhang L, Zhang J, al et‍. System simulation and policy optimization of China´s coal production capacity deviation in terms of the economy, environment, and energy security [J]‍. Resources Policy, 2021, 74: 102314‍.

[15] 武强 , 涂坤 , 曾一凡 , 等‍ . 打造我国主体能源煤炭升级版面临的主要问题与对策探讨 [J]‍. 煤炭学报 , 2019 , 44 6 : 1625 ‒ 1636 ‍.
Wu Q , Tu K , Zeng Y F , al e t ‍. Discussion on the main problems and countermeasures for building an upgrade version of main energy coal industry in China [J]‍. Journal of China Coal Society , 2019 , 44 6 : 1625 ‒ 1636 ‍.

[16] Liu H, Liu S‍. Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification [J]‍. International Journal of Hydrogen Energy, 2021, 46(14): 9630‒9643‍.

[17] Li J, Cheng W‍. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification [J]‍. International Journal of Hydrogen Energy, 2020, 45(51): 27979‒27993‍.

[18] 陈馨‍ . 典型制氢工艺生命周期碳排放对比研究 [J]‍. 当代石油石化 , 2023 , 31 1 : 19 ‒ 25 ‍.
Chen X‍ . Comparative study on life-cycle carbon emissions of typical hydrogen production processes [J]‍. Petroleum Petrochemical Today , 2023 , 31 1 : 19 ‒ 25 ‍.

[19] 张源 , 顾斌 , 周长冰 , 等‍ . 煤炭地下气化过程产气特征数值模拟研究 [J]‍. 采矿与安全工程学报 , 2022 , 39 6 : 1169 ‒ 1176 ‍.
Zhang Y , Gu B , Zhou C B , al e t ‍. Numerical simulation on gas production characteristics during underground coal gasification [J]‍. Journal of Mining Safety Engineering , 2022 , 39 6 : 1169 ‒ 1176 ‍.

[20] 金玲 , 郝成亮 , 吴立新 , 等‍ . 中国煤化工行业二氧化碳排放达峰路径研究 [J]‍. 环境科学研究 , 2022 , 35 2 : 368 ‒ 376 ‍.
Jin L , Hao C L , Wu L X , al e t ‍. Pathway of carbon emissions peak of China´s coal chemical industry [J]‍. Research of Environmental Sciences , 2022 , 35 2 : 368 ‒ 376 ‍.

[21] 严晓辉 , 杨芊 , 高丹 , 等‍ . 我国煤炭清洁高效转化发展研究 [J]‍. 中国工程科学 , 2022 , 24 6 : 19 ‒ 25 ‍.
Yan X H , Yang Q , Gao D , al e t ‍. Development of clean and efficient coal transformation in China [J]‍. Strategic Study of CAE , 2022 , 24 6 : 19 ‒ 25 ‍.

[22] 黄震 , 谢晓敏 , 张庭婷‍ . " 双碳"背景下我国中长期能源需求预测与转型路径研究 [J]‍. 中国工程科学 , 2022 , 24 6 : 8 ‒ 18 ‍.
Huang Z , Xie X M , Zhang T T . Medium- and long-term energy demand of China and energy transition pathway toward carbon neutrality [J]‍. Strategic Study of CAE , 2022 , 24 6 : 8 ‒ 18 ‍.

[23] 刘淑琴 , 刘欢 , 纪雨彤 , 等‍ . 深部煤炭地下气化制氢碳排放核算及碳减排潜力分析 [J]‍. 煤炭科学技术 , 2023 , 51 1 : 531 ‒ 541 ‍.
Liu S Q , Liu H , Ji Y T , al e t ‍. Carbon emission accounting and carbon reduction analysis for deep coal underground gasification to hydrogen [J]‍. Coal Science and Technology , 2023 , 51 1 : 531 ‒ 541 ‍.

Related Research