Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 2 doi: 10.15302/J-SSCAE-2023.07.015

Technology System of Offshore Carbon Capture, Utilization, and Storage

1. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China;
2. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3. CNOOC Research Institute Co., Ltd., Beijing 100012, China

Funding project:Ministry of Ecology and Environment project “CCICED Thematic Policy Research on A Sustainable Blue Economy for Carbon Neutrality” (20233160A0073) Received: 2022-12-21 Revised: 2023-02-08 Available online: 2023-03-30

Next Previous

Abstract

Offshore carbon capture, utilization, and storage (CCUS) is an engineering solution and technical system developed by coastal countries or regions to reduce carbon dioxide (CO2) emissions. Compared with onshore CCUS, offshore CCUS has multiple significant advantages, such as higher storage potential and safer storage environment. Offshore CCUS comprises capturing CO2 from large coastal or offshore carbon emission sources, compressing and transporting it to offshore storage platforms, and injecting it into sub-seabed geological reservoirs, to achieve permanent isolation from the atmosphere or use it to produce valuable products. This study reviews the development demand and industry status quo of offshore CCUS in China and worldwide and analyzes the technical and social values of offshore CCUS development. The development routes and trends of representative offshore CCUS technologies are summarized, including CO2 plant capture, CO2 pipeline transportation, CO2 storage in the deep saline aquifer and for petroleum displacement, CO2 chemical utilization, and several other technical frameworks. Focusing on the common problems faced by different technology systems, we propose the following suggestions for the future development of China’s offshore CCUS: strengthening the land-sea overall planning and layout, cultivating high-level research teams, and enhancing fundamental research, key technology research and development, cost control, scale expansion, and policy incentives at all stages of development.

Figures

图1

图2

References

[ 1 ] Bruvoll A, M‍‍ Larsen B. Greenhouse gas emissions in Norway: Do carbon taxes work? [J]‍. Energy Policy, 2004, 32(4): 493‒505‍.

[ 2 ] Furre A K, Eiken O, Alnes H, al et‍. 20 years of monitoring CO2-injection at Sleipner [J]‍. Energy Procedia, 2017, 114: 3916‒3926‍.

[ 3 ] Furre A K, Meneguolo R, Ringrose P, al et‍. Building confidence in CCS: From Sleipner to the northern lights project [J]‍. First Break, 2019, 7: 81‒87‍.

[ 4 ] Vandeweijer V, Hofstee C, Graven H‍. CO2 injection at K12-B, the final story [C]‍. Utrecht: Fifth CO2 Geological Storage Workshop, 2018‍.

[ 5 ] Talebian S H, Masoudi R, Tan I M, al et‍. Foam assisted CO2-EOR: A review of concept, challenges, and future prospects [J]‍. Journal of Petroleum Science and Engineering, 2014, 120: 202‒215‍.

[ 6 ] Shi J Q, Imrie C, Sinayuc C, al et‍. Snøhvit CO2 storage project: Assessment of CO2 injection performance through history matching of the injection well pressure over a 32-months period [J]‍. Energy Procedia, 2013, 37: 3267‒3274‍.

[ 7 ] Godoi J M A, P H L d S‍ Matai. Enhanced oil recovery with carbon dioxide geosequestration: First steps at pre-salt in Brazil [J]‍. Journal of Petroleum Exploration and Production, 2021, 11: 1429‒1441‍.

[ 8 ] Ha G T, Tran N D, Vu H H, al et‍. Design & implementation of CO2 Huff-n-Puff operation in a Vietnam offshore field [C]‍. Abu Dhabi: International Petroleum Conference and Exhibition, 2012‍.

[ 9 ] Tanaka Y, Sawada Y, Tanase D, al et‍. Tomakomai CCS demonstration project of Japan, CO2 injection in process [J]‍. Energy Procedia, 2017, 114: 5836‒5846‍.

[10] Helgesen L I, Cauchois G, Nissen-Lie T, al et‍. CO2 footprint of the Norwegian longship project [C]‍. Abu Dhabi: Proceedings of the 15th Greenhouse Gas Control Technologies Conference, 2021‍.

[11] Allen M J, Faulkner D R, Worden R H, al et‍. Geomechanical and petrographic assessment of a CO2 storage site: Application to the Acorn CO2 storage site, offshore United Kingdom [J]‍. International Journal of Greenhouse Gas Control, 2020, 94: 102923‍.

[12] Akerboom S, Waldmann S, Mukherjee A, al et‍. Different this time? The prospects of CCS in the Netherlands in the 2020s [J]‍. Frontiers in Energy Research, 2021, 9: 1‒17‍.

[13] Balakrisnan M, Halim R B A, Johan A L, al et‍. Methodological engineering approach in designing injector and observation wells incorporating MMV requirements in carbonate CCS Project in offshore Malaysia [C]‍. Abu Dhabi: International Petroleum Exhibition & Conference, 2022‍.

[14] Hoffman N, Marshall S, Horan S‍. Successful appraisal of the CarbonNet Pelican CO2 offshore storage site [C]‍. Abu Dhabi: The 15th Greenhouse Gas Control Technologies Conference, 2021‍.

[15] Loria P, B‍ Bright M. Lessons captured from 50 years of CCS projects [J]‍. The Electricity Journal, 2021, 34: 106998‍.

[16] 瞿剑‍ . 我国首个海上二氧化碳封存示范工程启动 [N]‍. 科技日报 , 2021-08-31 02‍.
Qu J‍ . China launches first offshore carbon storage project [N]‍. Science and Technology Daily , 2021-08-31 02‍.‍

[17] Zhou D, Li P, Liang X, al et‍. A long-term strategic plan of offshore CO2 transport and storage in northern South China Sea for a low-carbon development in Guangdong Province, China [J]‍. International Journal of Greenhouse Gas Control, 2018, 70: 76‒87‍.

[18] Li H, Lau H C, Wei X, al et‍. CO2 storage potential in major oil and gas reservoirs in the Northern South China Sea [J]‍. International Journal of Greenhouse Gas Control, 2021, 108: 103328‍.

[19] International Energy Agency‍. Energy technology perspectives 2020: Chapter 2‍. Technology needs for net-zero emissions [R]‍. Paris: International Energy Agency, 2020‍.

[20] Ritchie H, Roser M‍. China: CO2 country profile [EB/OL]‍. (2022-12-31)[2023-02-08]‍. https://ourworldindata‍.org/CO2/country/china‍. link1

[21] 甘满光 , 张力为 , 李小春 , 等‍ . 欧洲CCUS技术发展现状及对我国的启示 [JOL]‍. 热力发电 : 1 ‒ 13 [ 2023-02-09 ]‍. https:doi‍.org10‍.19666j‍.rlfd‍.202210245‍ .
Gan M G , Zhang L W , Li X C , al e t ‍. CCUS technology development in Europe as well as enlightenment and suggestions to China [JOL]‍. Thermal Power Generation : 1 ‒ 13 [ 2023-02-09 ]‍. https:doi‍.org10‍.19666j‍.rlfd‍.202210245‍ . link1

[22] Zhou D, Li P C, Zhao Z X, al et‍. Assessment of CO2 storage potential for Guangdong Province, China [R]‍. Guangzhou: Global CCS institute, 2013‍.

[23] 蔡博峰 , 李琦 , 张贤 , 等‍ . 中国二氧化碳捕集利用与封存 CCUS 年度报告 2021——中国CCUS路径研究 [R]‍. 北京 武汉 : 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心 , 2021 ‍.
Cai B F , Li Q , Zhang X , al e t ‍. China carbon dioxide capture, utilization and storage CCUS annual report 2021‍—Study on the CCUS pathway in China [R]‍. BeijingWuhan : Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics of Chinese Academy of sciences, The Administrative Center for China´s Agenda 21 , 2021 ‍.

[24] Institute‍ Global CCS. Roadmap for carbon capture and storage demonstration and deployment in the People´s Republic of China [R]‍. Metro Manila: Asian Development Bank, 2015‍.

[25] Dahowski R T, Li X, Davidson C L, al et‍. Regional opportunities for carbon dioxide capture and storage in China: A comprehensive CO2 storage cost curve and analysis of the potential for large scale carbon dioxide capture and storage in the People´s Republic of China [R]‍. Richland: Pacific Northwest National Lab, 2009‍.

[26] 张贤 , 李阳 , 马乔 , 等‍ . 我国碳捕集利用与封存技术发展研究 [J]‍. 中国工程科学 , 2021 , 23 6 : 70 ‒ 80 ‍.
Zhang X , Li Y , Ma Q , al e t ‍. Development of carbon capture, utilization and storage technology in China [J]‍. Strategic Study of CAE , 2021 , 23 6 : 70 ‒ 80 ‍.

[27] Li J H‍. Accelerate the offshore CCUS to carbon-neutral China [J/OL]‍. Fundamental Research:1‒10 [2022-11-09]‍. https://doi‍.org/10‍.1016/j‍.fmre‍.2022‍.10‍.015‍. link1

[28] Ringrose P S, Thorsen R, Zweigel P, al et‍. Ranking and risking alternative CO2 storage sites offshore Norway [C]‍. Malmö: Fourth Sustainable Earth Sciences Conference, 2017‍.

[29] 单彤文 , 张超 , 秦锋 , 等‍ . 二氧化碳规模化封存典型技术路线解析与产业前景展望 [J]‍. 中国海上油气 , 2022 , 34 6 : 196 ‒ 204 ‍.
Shan T W , Zhang C , Qin F , al e t ‍. Typical technical roadmap analysis and industry prospect of large-scale CO 2 sequestration [J]‍. China Offshore Oil and Gas , 2022 , 34 6 : 196 ‒ 204 ‍.

[30] Li P, Zhou D, Zhang C, al et‍. Assessment of the effective CO2 storage capacity in the Beibuwan Basin, offshore of Southwestern P‍. R‍. China [J]‍. International Journal of Greenhouse Gas Control, 2015, 37: 325‒339‍.

[31] Franchi G, Capocelli M, De Falco M, al et‍. Hydrogen production via steam reforming: A Critical analysis of MR and RMM technologies [J]‍. Membranes, 2020, 10(1): 1‒20‍.

[32] Eide L I, Batum M, Dixon T, al et‍. Enabling large-scale carbon capture, utilisation, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments—A review [J]‍. Energies, 2019, 12(10): 1945‍.

[33] 华东阳 , 张晓敏 , 马梦桐‍ . 海上平台"膜分离+酸气回注"工艺技术研究 [J]‍. 天然气与石油 , 2022 , 40 5 : 26 ‒ 31 ‍.
Hua D Y , Zhang X M , Ma M T‍ . Study on "membrane separation + acid gas reinjection" technology on offshore platform [J]‍. Natural Gas and Oil , 2022 , 40 5 : 26 ‒ 31 ‍.

[34] 王全德‍ . 超临界CO 2 管道输送研究现状 [J]‍. 云南化工 , 2018 , 45 12 : 120 ‒ 121 ‍.
Wang Q D‍ . Research status of supercritical CO 2 pipeline transportation [J]‍. Yunan Chemical Technology , 2018 , 45 12 : 120 ‒ 121 ‍.

[35] Zhang Y, Wang D, Yang J, al et‍. Correlative comparison of gas CO2 pipeline transportation and natural gas pipeline transportation [J]‍. Modelling, Measurement and Control B, 2017, 86(1): 63‒75‍.

[36] Brownsort P A, Scott V, R‍ Haszeldine S. Reducing costs of carbon capture and storage by shared reuse of existing pipeline—Case study of a CO2 capture cluster for industry and power in Scotland [J]‍. International Journal of Greenhouse Gas Control, 2016, 52: 130‒138‍.

[37] Yamasaki A‍. An overview of CO2 mitigation options for global warming—Emphasizing CO2 sequestration options [J]‍. Journal of Chemical Engineering of Japan, 2023, 36(4): 361‒375‍.

[38] Li P, Liu X, Lu J, al et‍. Potential evaluation of CO2 EOR and storage in oilfields of the Pearl River Mouth Basin, northern South China Sea [J]‍. Greenhouse Gases: Science and Technology, 2018, 8(5): 954‒977‍.

[39] 李春峰 , 赵学婷 , 段威 , 等‍ . 中国海域盆地CO 2 地质封存选址方案与构造力学分析 [J]‍. 力学学报 , 2023 , 55 2 : 1 ‒ 13 ‍.
Li C F , Zhao X T , Duan W , al e t ‍. Strategic and geodynamic analyses of geo-sequestration of CO 2 in China Offshore Sedimentary Basins [J]‍. Chinese Journal of Theoretical and Applied Mechanics , 2023 , 55 2 : 1 ‒ 13 ‍.

[40] Ringrose P, Mechel T‍. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions [J]‍. Scientific Reports, 2019, 9(1): 17944‍.

[41] Wildenborg T, Loeve D, Neele F‍. Large-scale CO2 transport and storage infrastructure development and cost estimation in the Netherlands offshore [J]‍. International Journal of Greenhouse Gas Control, 2022, 118: 103649‍.

[42] Sachde D, McKaskle R, Lundeen J‍. Review of technical challenges, risks, path forward, and economics of offshore CO2 transportation and infrastructure [C]‍. Houston: Offshore Technology Conference, 2019‍.

[43] Lindeberg E, Grimstad A A, Bergmo P, al et‍. Large scale tertiary CO2 EOR in mature water flooded Norwegian Oil Fields [J]‍. Energy Procedia, 2017, 114: 7096‒7106‍.

[44] Goldberg D, Aston L, Bonneville A, al et‍. Geological storage of CO2 in sub-seafloor basalt: The CarbonSAFE pre-feasibility study offshore Washington State and British Columbia [J]‍. Energy Procedia, 2018, 146: 158‒165‍.

[45] Van Pham T H, Aagaard P, Hellevang H‍. On the potential for CO2 mineral storage in continental flood basalts-PHREEQC batch-and 1D diffusion-reaction simulations [J]‍. Geochemical Transactions, 2012, 13(1): 1‒12‍.

[46] Mattera J M, Broecker W S, Stute M, al et‍. Permanent carbon dioxide storage into basalt: The CarbFix pilot project, Iceland [J]‍. Energy Procedia, 2009, 1(1): 3641‒3646‍.

[47] Goldberg D S, Takahashi T, L‍ Slagle A. Carbon dioxide sequestration in deep-sea basalt [J]‍. Proceedings of the National Academy of Sciences, 2008, 105(29): 9920‒9925‍.

[48] Aradóttir E, Beuttler C, Bonneville A‍. Accelerating offshore carbon capture and storage: Opportunities and challenges for CO2 removal [R]‍. New York: Columbia World Projects, 2019‍.

[49] Knoope M M, Ramírez A A, P‍ Faaij A. The influence of uncertainty in the development of a CO2 infrastructure network [J]‍. Applied Energy, 2015, 158: 332‒347‍.

[50] Cantucci B, Buttinelli M, Procesi M, al et‍. Geologic carbon sequestration: Algorithms for CO2 storage capacity estimation: Review and case study [M]‍. Switzerland: Springer Cham, 2016: 21‒44‍.

[51] Lee H, Shinna Y J, Ong S H, al et‍. Fault reactivation potential of an offshore CO2 storage site, Pohang Basin, South Korea [J]‍. Journal of Petroleum Science and Engineering, 2017, 152: 427‒442‍.

[52] Metz B, Davidson O, de Coninck H C, al et‍. IPCC special report on carbon dioxide capture and storage [R]‍. Cambridge: Intergovernmental Panel on Climate Change, 2005‍.

[53] Haugan P M, Joos F‍. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs [J]‍. Geophysical Research Letters, 2004, 31(18): L18202‍.

[54] Hassenrück C, Fink A, Lichtschlag A, al et‍. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: The importance of ecosystem approaches [J]‍. FEMS Microbiology Ecology, 2016, 92: fiw027‍.

[55] Blackford J, Bull J M, Cevatoglu M, al et‍. Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS) [J]‍. International Journal of Greenhouse Gas Control, 2015, 38: 221‒229‍.

[56] Blackford J, Alendal G, Avlesen H, al et‍. Impact and detectability of hypothetical CCS offshore seep scenarios as an aid to storage assurance and risk assessment [J]‍. International Journal of Greenhouse Gas Control, 2020, 95: 102949‍.

[57] Connelly D P, Bull J M, Flohr A, al et‍. Assuring the integrity of offshore carbon dioxide storage [J]‍. Renewable and Sustainable Energy Reviews, 2022, 166: 112670‍.

[58] 周蒂 , 李鹏春 , 张翠梅‍ . 离岸二氧化碳驱油的国际进展及我国近海潜力初步分析 [J]‍. 南方能源建设 , 2015 , 2 3 : 1 ‒ 9 ‍.
Zhou D , Li P C , Zhang C M‍ . Offshore CO 2 -EOR: Worldwide progress and a preliminary analysis on its potential in offshore sedimentary basins off China [J]‍. Southern Energy Construction , 2015 , 2 3 : 1 ‒ 9 ‍.

[59] 刘雪雁 , 李鹏春 , 周蒂 , 等‍ . 南海北部珠江口盆地惠州21-1油田CO 2 -EOR与碳封存潜力快速评价 [J]‍. 海洋地质前沿 , 2017 , 33 3 : 56 ‒ 65 ‍.
Liu X Y , Li P C , Zhou D , al e t ‍. Quick assessment of CO 2 -EOR and CO 2 sequestration potential in Huizhou21-1 Oilfield, Pearl River Mouth Basin, Northern South China Sea [J]‍. Marine Geology Frontiers , 2017 , 33 3 : 56 ‒ 65 ‍.

[60] Sweatman R E, Crookshank S, Edman S‍. Outlook and technologies for offshore CO2 EOR/CCS projects [C]‍. Houston: Offshore Technology Conference, 2011‍.

[61] Thomas S‍. Enhanced oil recovery—An overview [J]‍. Oil & Gas Science and Technology, 2007, 63: 9‒19‍.

[62] Fergusona R, Nichols C, Leeuwen T V, al et‍. Storing CO2 with enhanced oil recovery [J]‍. Energy Procedia, 2009, 1(1): 1989‒1996‍.

[63] Schmelz W J, Hochman G, G‍ Miller K. Total cost of carbon capture and storage implemented at a regional scale: northeastern and midwestern United States [J]‍. Interface focus, 2020, 10: 20190065‍.

[64] 樊栓狮 , 刘发平 , 郎雪梅 , 等‍ . CO 2 捕集与置换开采天然气水合物中甲烷的研究进展 [J]‍. 天然气化工—C1化学与化工 , 2022 , 47 4 : 1 ‒ 10 ‍.
Fan S S , Liu F P , Lang X M , al e t ‍. Research progress of CO 2 capture and replacement of methane from natural gas hydrates [J]‍. Natural Gas Chemical Industry , 2022 , 47 4 : 1 ‒ 10 ‍.

[65] 陈文钢 , 李东泽‍ . NH 3 作为CO 2 置换CH 4 水合物促进剂的分子动力学模拟研究 [J]‍. 石油与天然气化工 , 2021 , 50 5 : 50 ‒ 53 ‍.
Chen W G , Li D Z‍ . Molecular dynamics simulation of NH 3 as a promoter for CO 2 replacement of CH 4 hydrate [J]‍. Chemical Engineering of Oil Gas , 2021 , 50 5 : 50 ‒ 53 ‍.

[66] Boswell R, Schoderbek D, Collett T S, al et‍. The Iġnik Sikumi field experiment, Alaska North Slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs [J]‍. Energy & Fuels, 2017, 31(1): 140‒153‍.

[67] 中华人民共和国自然资源部‍ . 中国矿产资源报告 [M]‍. 北京 : 地质出版社 , 2018 ‍.
Ministry of Natural Resources of the People´s Republic of China‍ . China mineral resources [M]‍. Beijing : Geological Publishing House Co‍., Ltd‍. , 2018 ‍.

[68] 李清平 , 周守为 , 赵佳飞 , 等‍ . 天然气水合物开采技术研究现状与展望 [J]‍. 中国工程科学 , 2022 , 24 3 : 214 ‒ 224 ‍.
Li Q P , Zhou S W , Zhao J F , al e t ‍. Research status and prospects of natural gas hydrate exploitation technology [J]‍. Strategic Study of CAE , 2022 , 24 3 : 214 ‒ 224 ‍.

[69] Jarrell P M, Fox C, Stein M, al et‍. Practical aspects of CO2 flooding [M]‍. Texas: Society of Petroleum Engineers, 2002‍.

[70] Wang J, Ryan D, Anthony E‍ J, al et‍. Effects of impurities on geological storage of CO2 [R]‍. Cheltenham: IEA Environmental Projects Ltd‍., 2011‍.

[71] Porter R T, Fairweather M, Pourkashanian M, al et‍. The range and level of impurities in CO2 streams from different carbon capture sources [J]‍. International Journal of Greenhouse Gas Control, 2015, 36: 161‒174‍.

[72] Morgan H, Large D, Bateman K, al et‍. The effect of variable oxygen impurities on microbial activity in conditions resembling geological storage sites [J]‍. Energy Procedia, 2017, 114: 3077‒3087‍.

Related Research