Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 3 doi: 10.15302/J-SSCAE-2023.07.026

Metal Corrosion in Carbon Capture, Utilization, and Storage: Progress and Challenges

1. 中国石油大学(北京)机械与储运工程学院,北京 102249;

2. 低渗透油气田勘探开发国家工程实验室,西安 710018;

3. 中国石油天然气股份有限公司长庆油田分公司油气工艺研究院,西安 710018;

4. 宝山钢铁股份有限公司中央研究院,上海 201999;

5. 石油管材及装备材料服役行为与结构安全国家重点实验室,西安 710077;

6. 中国石油集团工程材料研究院有限公司,西安 710077;

7. 油气资源与探测国家重点实验室,北京 102249

Funding project:国家自然科学基金面上项目(52271082);北京市自然科学基金面上项目(2222074);内蒙古重点研发计划项目(2021ZD0038) Received: 2023-03-03 Revised: 2023-04-24

Next Previous

Abstract

This study reviews the metal corrosion problem regarding the carbon capture, utilization, and storage (CCUS) technology and aims to deepen the understanding and research on this problem and thus deal with the severe material corrosion failures in the capture, transportation, utilization, and storage systems. Based on the novel corrosion environments, the uniqueness of corrosion behaviors, limited cognition, and relative lack of protective measures in CCUS technology systems, this study analyzes the possible types of metal corrosion and its major influencing factors, explores the challenges it brings, and draws the following conclusions. For the CO2 organic amine capture system, the degradation mechanism of absorbents and the impact of degradation products on the corrosion process are complex, and some degradation products have a inhibitory effect on metal corrosion. The internal corrosion issue of dense-phase CO2 transmission pipelines cannot be ignored, and controlling the moisture content is the key to controlling this corrosion problem. The risk of corrosion failures leading to CO2 leakage is high in the wellbore tubing of CO2 enhanced oil recovery utilization and storage systems under the long-term coupled effects of ultra-high CO2 partial pressure, carbon source impurities, high mineralized formation water, microorganisms, and stress. Finally, the research that needs to be conducted urgently in the future is prospected, including the corrosion impact of different carbon source impurities on each subsystem, the material degradation law in the wellbore area under long-term storage conditions, and corrosion protection  technologies of CCUS systems.

Figures

图1

图2

图3

图4

图5

References

[ 1 ] Yuan S Y , Ma D S , Li J S , al e t ‍. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization [J]‍. Petroleum Exploration and Development , 2022 , 49 4 : 828 ‍–‍834‍.

[ 2 ] Cai B F , Li Q , Zhang X , al e t ‍. China carbon dioxide capture, utilization and storage CCUS annual report 2021: China CCUS path study [R]‍. BeijingWuhan : Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics of Chinese Academy of sciences, The Administrative Center for China´s Agenda 21 , 2021 ‍.

[ 7 ] Xiang Y , Hou L , Du M , al e t ‍. Research progress and development prospect of CCUS-EOR technologies in China [J]‍. Petroleum Geology and Recovery Efficiency , 2022 , 30 2 : 1 ‍–‍17‍.

[15] Zhao X H , He Z W , Liu J W , al e t ‍. Research status of CCUS corrosion control technology [J]‍. Petroleum Tubular Goods and Instruments , 2017 , 3 3 : 1 ‍–‍6‍.

[16] Li Y P , Zhu S D , Li J L , al e t ‍. Research progress of H 2 SCO 2 corrosion and protection technology for oil and gas tubing [J]‍. Corrosion and Protection , 2022 , 43 6 : 1 ‍–‍6, 12‍.

[17] Li Y X , Liu X H , Wang C L , al e t ‍. Research progress on corrosion behavior of gaseous CO 2 transportation pipelines containing impurities [J]‍. Acta Metallurgica Sinica , 2021 , 57 3 : 283 ‍–‍294‍.

[19] Shang Y B , Lin G , Zhao D Q , al e t ‍. Study on corrosion rules of seamless steel tube in liquid CO 2 [J]‍. Inner Mongolia Petrochemical Industry , 2018 , 5 : 15 ‍–‍19‍.

[20] Shang Y B , Lin G , Zhao D Q , al e t ‍. Study on corrosion rules of 16Mn steel in liquid CO 2 [J]‍. Total Corrosion Control , 2019 , 33 2 : 83 ‍–‍88.

[36] Fan H Y , Jiang Z Q , An X W , al e t ‍. Cause analysis of stress corrosion fracture of oil field pipeline [J]‍. Oil Gas Field Surface Engineering , 2022 , 41 1 : 71 ‍–‍74, 79‍.

[37] Hu F T , Zhao M F , Xing X , al e t ‍. Failure analysis of 3Cr P110 repaired tubing in an oilfield [J]‍. Materials Protection , 2020 , 53 10 : 115 ‍–‍119, 148‍.

[38] Tan C Y , Yin Q S , Yang J , al e t ‍. Corrosion mechanism of L80 tubing in a Bohai oilfield [J]‍. Surface Technology , 2017 , 46 3 : 236 ‍–‍245‍.

[39] Wang J L , Zang H Y , Zhang Y M , al e t ‍. Corrosion failure analysis of oil pipes and couplings [J]‍. Corrosion Protection , 2010 , 31 8 : 662 ‍–‍664‍.

[40] Zhao C Y , Qi Y M‍ . Fracture failure analysis of P110 tubing coupling for an injection well in an oil field [J]‍. Petroleum Tubular Goods Instruments , 2022 , 8 3 : 46 ‍–‍50‍.

[43] Wang F , Wei C Y , Huang T J , al e t ‍. Effect of H 2 S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel inannulus environment around CO 2 injection well [J]‍. Journal of Chinese Society for Corrosion and Protection , 2014 , 34 1 : 46 ‍–‍52‍.

[48] Chu W Y , Qiao L J , Gao K W‍ . Anodic dis-solution stress corrosion [J]‍. Chinese Science Bulletin , 2000 , 45 24 : 2581 ‍–‍2588‍.

[49] Liu C S , Li Z Z , Chen C F‍ . Stress corrosion cracking of stainless steel [J]‍. Surface Technology , 2020 , 49 3 : 1 ‍–‍13‍.

[54] Yang X L , Tian Y Q , Wang X , al e t ‍. Failure analysis of corrosion and fracture of N80 tubing coupling [J]‍. Welded Pipe and Tube , 2022 , 45 1 : 42 ‍–‍48‍.

[55] Zhang Y M , Zang H Y , Dong A H , al e t ‍. Corrosion failure analysis of 13Cr steel oil pipe [J]‍. Corrosion Science and Protection Technology , 2009 , 21 5 : 499 ‍–‍501‍.

[56] Zhang Y , Yang K , Yu L S , al e t ‍. Research progress on thread corrosion and protectionof oil well pipe joint [J]‍. Science Technology and Engineering , 2022 , 22 7 : 2563 ‍–‍2572‍.

[57] Cang R , Zhan J L , Wu P , al e t ‍. Cause analysis on corrosion of an L80 tube threaded joint [J]‍. Physical Testing and Chemical Analysis Part A: Physical Testing , 2019 , 55 4 : 278 ‍–‍281, 288‍.

[61] Hu Q‍ . Study on the electrochemeical noise characteristics and the mechanism of crevice corrosion [D]‍. Wuhan : Huazhong University of Science and Technology Doctoral dissertation , 2011 ‍.

[62] Song Y Q , Du C W , Zhang X , al e t ‍. Influence of Cl - concentration on crevice corrosion of X70 pipe line steel [J]‍. Acta Metallurgica Sinica , 2009 , 45 9 : 1130 ‍–‍1134‍.

[63] Zhong X K , Deng Z Q , Mo L , al e t ‍. Crevice corrosion at screwed joint with tensile stress [J]‍. Equipment Environmental Engineering , 2020 , 17 11 : 52 ‍–‍59‍.

[66] Yao P C , Xie J F , Yang C Y , al e t ‍. Effect of Cl - concentration and CO 2 partial pressure on stainless steel tubing under high temperature and high pressure [J]‍. Total Corrosion Control , 2017 , 31 10 : 67 ‍–‍70‍.

[67] Wang Y F‍ . Study on the pitting corrosion mechanism of L360 steel under the deposition of elemental sulfur in the H 2 S ‍ –‍CO 2‍ –‍Cl - system [D]‍. Xi´an : Xi´an Shiyou University Master´s thesis , 2021 ‍.

[75] Zhang K , Sun Y , Wang C J , al e t ‍. Researchon CO 2 corrosion and protection in carbon capture, utilization and storage [J]‍. Surface Technology , 2022 , 51 9 : 43 ‍–‍52‍.

Related Research