Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 3 doi: 10.15302/J-SSCAE-2023.07.026

Metal Corrosion in Carbon Capture, Utilization, and Storage: Progress and Challenges

1. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China;

2. National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi’an 710018, China;

3. Oil and Gas Technology Research Institute, Changqing Oilfield Company, Petro China Company Limited, Xi’an 710018, China;

4. Central Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201999, China;

5. State Key Laboratory for Performance and Structural Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710077, China;

6. CNPC Engineering Materials Research Institute Co. Ltd., Xi’an 710077, China;

7. State Key Laboratory of Petroleum Resource and Prospecting, Beijing 102249, China

Funding project:The National Natural Science Foundation of China (52271082); Beijing Natural Science Foundation (2222074); Inner Mongolia Key R&D Program of China (2021ZD0038) Received: 2023-03-03 Revised: 2023-04-24

Next Previous

Abstract

This study reviews the metal corrosion problem regarding the carbon capture, utilization, and storage (CCUS) technology and aims to deepen the understanding and research on this problem and thus deal with the severe material corrosion failures in the capture, transportation, utilization, and storage systems. Based on the novel corrosion environments, the uniqueness of corrosion behaviors, limited cognition, and relative lack of protective measures in CCUS technology systems, this study analyzes the possible types of metal corrosion and its major influencing factors, explores the challenges it brings, and draws the following conclusions. For the CO2 organic amine capture system, the degradation mechanism of absorbents and the impact of degradation products on the corrosion process are complex, and some degradation products have a inhibitory effect on metal corrosion. The internal corrosion issue of dense-phase CO2 transmission pipelines cannot be ignored, and controlling the moisture content is the key to controlling this corrosion problem. The risk of corrosion failures leading to CO2 leakage is high in the wellbore tubing of CO2 enhanced oil recovery utilization and storage systems under the long-term coupled effects of ultra-high CO2 partial pressure, carbon source impurities, high mineralized formation water, microorganisms, and stress. Finally, the research that needs to be conducted urgently in the future is prospected, including the corrosion impact of different carbon source impurities on each subsystem, the material degradation law in the wellbore area under long-term storage conditions, and corrosion protection  technologies of CCUS systems.

Figures

图1

图2

图3

图4

图5

References

[ 1 ] 袁士义 , 马德胜 , 李军诗 , 等‍‍ . 二氧化碳捕集、驱油与埋存产业化进展及前景展望 [J]‍. 石油勘探与开发 , 2022 , 49 4 : 828 ‍–‍834‍.
Yuan S Y , Ma D S , Li J S , al e t ‍. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization [J]‍. Petroleum Exploration and Development , 2022 , 49 4 : 828 ‍–‍834‍.

[ 2 ] 蔡博峰 , 李琦 , 张贤 , 等‍ . 中国二氧化碳捕集与利用封存CCUS年度报告2021——中国CCUS路径研究 [R]‍. 北京武汉 : 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心 , 2021 ‍.
Cai B F , Li Q , Zhang X , al e t ‍. China carbon dioxide capture, utilization and storage CCUS annual report 2021: China CCUS path study [R]‍. BeijingWuhan : Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics of Chinese Academy of sciences, The Administrative Center for China´s Agenda 21 , 2021 ‍.

[ 3 ] Kenarsari S D, Yang D, Jiang G, al et‍. Review of recent advances in carbon dioxide separation and capture [J]‍. RSC Advances, 2013, 3(45): 22773‍–‍22739‍.

[ 4 ] Davison J‍. Performance and costs of power plants with capture and storage of CO2 [J]‍. Energy, 2007, 32(7): 1163‍–‍1176‍.

[ 5 ] Krzemień A, Więckol-Ryk A, Smoliński A, al et‍. Assessing the risk of corrosion in am-ine based CO2 capture process [J]‍. Journal of Loss Prevention in the Process Industries, 2016, 43: 189‍–‍197‍.

[ 6 ] Zhao F, Cui C, Dong S, al et‍. An overviewon the corrosion mechanisms and inhibition techniques for amine-based post-combustion carbon capture process [J]‍. Separation and Purification Technology, 2023, 304: 122091‍.

[ 7 ] 向勇 , 侯力 , 杜猛 , 等‍ . 中国CCUS-EOR技术研究进展及发展前景 [J]‍. 油气地质与采收率 , 2022 , 30 2 : 1 ‍–‍17‍.
Xiang Y , Hou L , Du M , al e t ‍. Research progress and development prospect of CCUS-EOR technologies in China [J]‍. Petroleum Geology and Recovery Efficiency , 2022 , 30 2 : 1 ‍–‍17‍.

[ 8 ] Gao J, Wang S, Zhou S, al et‍. Corrosion and degradation performance of novel absorbent for CO2 capture in pilot-scale [J]‍. Energy Procedia, 2011, 4: 1534‍–‍1541‍.

[ 9 ] Kladkaew N, Idem R, Tontiwachwuthikul P, al et‍. Corrosion behavior of carbon steel in the monoethanolamine-H2O-CO2-O2-SO2 system: Products, reaction pathways, and kinetics [J]‍. Industrial & Engineering Chemistry Research, 2009, 48(23): 10169‍–10179‍.

[10] Xiang Y, Yan M, Choi Y S, al et‍. Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process [J]‍. International Journal of Greenhouse Gas Control, 2014, 30: 125‍–‍132‍.

[11] Tanthapanichakoon W, Veawab A, McGarvey B‍. Electrochemical investigation on the effect of heat-stable salts on corrosion in CO2 capture plants using aqueous solution of MEA [J]‍. Industrial & Engineering Chemistry Research, 2006, 45(8): 2586‍–‍2593‍.

[12] Xiang Y, Xie W M, Ni S Y, al et‍. Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process: Effect of NO3- [J]‍. Corrosion Science, 2020, 167: 108521‍.

[13] Panahi H, Eslami A , A‍ Golozar M. Corrosion and stress corrosion cracking initiation of grade 304 and 316 stainless steels in activated Methyl Diethanol Amine (aMDEA) solution [J]‍. Journal of Natural Gas Science and Engineering, 2018, 55: 106‍–‍112‍.

[14] Johnsen K, Holt H, Helle K, al et‍. Mapping of potential HSE issues related to large scale capture, transport and storage of CO2 [R]‍. Horvik: Det Norsk Veritas, 2008‍.

[15] 赵雪会 , 何治武 , 刘进文 , 等‍ . CCUS腐蚀控制技术研究现状 [J]‍. 石油管材与仪器 , 2017 , 3 3 : 1 ‍–‍6‍.
Zhao X H , He Z W , Liu J W , al e t ‍. Research status of CCUS corrosion control technology [J]‍. Petroleum Tubular Goods and Instruments , 2017 , 3 3 : 1 ‍–‍6‍.

[16] 李彦鹏 , 朱世东 , 李金灵 , 等‍ . 油气管道H 2 SCO 2 腐蚀与防护技术研究进展 [J]‍. 腐蚀与防护 , 2022 , 43 6 : 1 ‍–‍6, 12‍.
Li Y P , Zhu S D , Li J L , al e t ‍. Research progress of H 2 SCO 2 corrosion and protection technology for oil and gas tubing [J]‍. Corrosion and Protection , 2022 , 43 6 : 1 ‍–‍6, 12‍.

[17] 李玉星 , 刘兴豪 , 王财林 , 等‍ . 含杂质气态CO 2 输送管道腐蚀研究进展 [J]‍. 金属学报 , 2021 , 57 3 : 283 ‍–‍294‍.
Li Y X , Liu X H , Wang C L , al e t ‍. Research progress on corrosion behavior of gaseous CO 2 transportation pipelines containing impurities [J]‍. Acta Metallurgica Sinica , 2021 , 57 3 : 283 ‍–‍294‍.

[18] Farelas F, Choi Y S, Nešić S‍. Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid CO2 phases in the presence of H2O and SO2 [J]‍. Corrosion, 2013, 69: 243‍–‍250‍.

[19] 商永滨 , 林罡 , 赵大庆 , 等‍ . 20 # 无缝钢管在液态CO 2 中的腐蚀规律研究 [J]‍. 内蒙古石油化工 , 2018 , 5 : 15 ‍–‍19‍.
Shang Y B , Lin G , Zhao D Q , al e t ‍. Study on corrosion rules of seamless steel tube in liquid CO 2 [J]‍. Inner Mongolia Petrochemical Industry , 2018 , 5 : 15 ‍–‍19‍.

[20] 商永滨 , 林罡 , 赵大庆 , 等‍ . 16Mn钢在液态CO 2 中的腐蚀规律研究 [J]‍. 全面腐蚀控制 , 2019 , 33 2 : 83 ‍–‍88‍.
Shang Y B , Lin G , Zhao D Q , al e t ‍. Study on corrosion rules of 16Mn steel in liquid CO 2 [J]‍. Total Corrosion Control , 2019 , 33 2 : 83 ‍–‍88.

[21] Sui P F, Sun J B, Hua Y, al et‍. Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S [J]‍. International Journal of Greenhouse Gas Control, 2018, 73: 60‍–‍69‍.

[22] Xiang Y, Wang Z, Yang X, al et‍. The upper limit of moisture content for supercritical CO2 pipeline transport [J]‍. The Journal of Supercritical Fluids, 2012, 67: 14‍–‍21‍.

[23] Sun C, Sun J, Liu S, al et‍. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2‍–‍H2O‍–‍O2‍–‍H2S‍–SO2 environment as relevant to CCS application [J]‍. Corrosion Science, 2018, 137: 151‍–‍162‍.

[24] Sun C, Sun J, Wang Y, al et‍. Effect of impurity interaction on the corrosion film characteristics and corrosion morphology evolution of X65 steel in water saturated supercritical CO2 system [J]‍. International Journal of Greenhouse Gas Control, 2017, 65: 117‍–‍127‍.

[25] Wang W H, Shen K L, Tang S, al et‍. Synergisticeffect of O2 and SO2 gas impurities on X70 steel corrosion in water-saturated supercritical CO2 [J]‍. Process Safety and Environmental Protection, 2019, 130: 57‍–‍66‍.

[26] Sun C, Wang Y, Sun J B, al et‍. Effect of impurity on the corrosion behavior of X65 steel in water saturated supercritical CO2 system [J]‍. The Journal of Supercritical Fluids, 2016, 116: 70‍–‍82‍.

[27] Xiang Y, Wang Z, Xu C, al et‍. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated superc-ritical CO2 mixed with SO2 [J]‍. The Journal of Supercritical Fluids, 2011, 58(2): 286‍–‍294‍.

[28] Li C, Xiang Y, Li W G‍. Initial corrosion mechanism for API 5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system: Inhibition effect of SO2 impurity [J]‍. Electrochimica Acta, 2019, 321: 134663‍.

[29] Sun C, Sun J, Wang Y, al et‍. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]‍. Corrosion Science, 2016, 107: 193‍–‍203‍.

[30] Dugstad A, Halseid M, Morland B‍. Testing of CO2 specifications with respect to corrosion and bulk phase reactions [J]‍. Energy Procedia, 2014, 63: 2547‍–‍2556‍.

[31] Xiang Y, Wang Z, Xu M H, al et‍. A mechanistic model for pipeline steel corrosion in supercritical CO2‍–‍SO2‍–‍O2‍–‍H2O environments [J]‍. The Journal of Supercritical Fluids, 2013, 82: 1‍–‍12‍.

[32] Ge X, Wang X, Zhang M, al et‍. Correlation and prediction of activity and osmotic coefficients of aqueous electrolytes at 298‍.15K by the modified TCPC model [J]‍. Journal of Chemical & Engineering Data, 2007, 52(2): 538‍–‍547‍.

[33] Xiang Y, Wang Z, Li Z, al et‍. Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments [J]‍. Corrosion Engineering, Science and Technology, 2013, 48(2): 121‍–‍129‍.

[34] Wei L, Pang X, Gao K‍. Effect of flow rate on localized corrosion of X70 steel in super critical CO2 environments [J]‍. Corrosion Science, 2018, 136: 339‍–‍351‍.

[35] Xiang Y, Song C, Li C, al et‍. Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities [J]‍. Process Safety and Environmental Protection, 2020, 140: 124‍–‍136‍.

[36] 樊海燕 , 姜志强 , 安雪微 , 等‍ . 油田管道应力腐蚀断裂成因分析 [J]‍. 油气田地面工程 , 2022 , 41 1 : 71 –‍74, 79‍.
Fan H Y , Jiang Z Q , An X W , al e t ‍. Cause analysis of stress corrosion fracture of oil field pipeline [J]‍. Oil Gas Field Surface Engineering , 2022 , 41 1 : 71 ‍–‍74, 79‍.

[37] 胡芳婷 , 赵密锋 , 邢星 , 等‍ . 某油田3Cr P110修复油管断裂原因分析 [J]‍. 材料保护 , 2020 , 53 10 : 115 ‍–‍119, 148‍.
Hu F T , Zhao M F , Xing X , al e t ‍. Failure analysis of 3Cr P110 repaired tubing in an oilfield [J]‍. Materials Protection , 2020 , 53 10 : 115 ‍–‍119, 148‍.

[38] 谭才渊 , 殷启帅 , 杨进 , 等‍ . 渤海某油田L80油管腐蚀机理研究 [J]‍. 表面技术 , 2017 , 46 3 : 236 ‍–‍245‍.
Tan C Y , Yin Q S , Yang J , al e t ‍. Corrosion mechanism of L80 tubing in a Bohai oilfield [J]‍. Surface Technology , 2017 , 46 3 : 236 ‍–‍245‍.

[39] 王俊良 , 臧晗宇 , 张亚明 , 等‍ . 油管及油管接箍腐蚀失效分析 [J]‍. 腐蚀与防护 , 2010 , 31 8 : 662 ‍–‍664‍.
Wang J L , Zang H Y , Zhang Y M , al e t ‍. Corrosion failure analysis of oil pipes and couplings [J]‍. Corrosion Protection , 2010 , 31 8 : 662 ‍–‍664‍.

[40] 赵存耀 , 齐亚猛‍ . 某油田注水井P110钢级油管接箍开裂失效分析 [J]‍. 石油管材与仪器 , 2022 , 8 3 : 46 ‍–‍50‍.
Zhao C Y , Qi Y M‍ . Fracture failure analysis of P110 tubing coupling for an injection well in an oil field [J]‍. Petroleum Tubular Goods Instruments , 2022 , 8 3 : 46 ‍–‍50‍.

[41] Ding Y, Cheng C H, Case R‍. Electrochemical and morphological investigation of corrosion behavior of C1018 in a subcritical and supercritical CO2 environment with presence of H2S [C]‍. San Antonio: The AMPP Annual Conference, 2022‍.

[42] Zhou C, Zheng S, Chen C, al et‍. The effectof the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]‍. Corrosion Science, 2013, 67: 184‍–‍192‍.

[43] 王峰 , 韦春艳 , 黄天杰 , 等‍ . H 2 S分压对13Cr不锈钢在CO 2 注气井环空环境中应力腐蚀行为的影响 [J]‍. 中国腐蚀与防护学报 , 2014 , 34 1 : 46 ‍–‍52‍.
Wang F , Wei C Y , Huang T J , al e t ‍. Effect of H 2 S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel inannulus environment around CO 2 injection well [J]‍. Journal of Chinese Society for Corrosion and Protection , 2014 , 34 1 : 46 ‍–‍52‍.

[44] A‍ Jones D. Evidence of localized surface plasticity during stress corrosion cracking [C]‍. Orlando: National Association of Corrosion Engineers (NACE) International Annual Conference and Corrosion Show, 1995‍.

[45] Sieradzki K, C‍ Newman R. Stress corrosion cracking [J]‍. Journal of Physics and Chemistry of Solids, 1987, 48(11): 1101‍–‍1113‍.

[46] Sieradzki K, C‍ Newman R. Brittle behavior of ductile metals during stress-corrosion cracking [J]‍. Philosophical Magazine A, 2006, 51(1): 95‍–‍132‍.

[47] Woodtli J, Kieselbach R‍. Damage due to hydrogen embrittlement and stress corrosion cracking [J]‍. Engineering Failure Analysis, 2000, 7(6): 427‍–‍450‍.

[48] 褚武扬 , 乔利杰 , 高克玮‍ . 阳极溶解型应力腐蚀 [J]‍. 科学通报 , 2000 , 45 24 : 2581 ‍–‍2588‍.
Chu W Y , Qiao L J , Gao K W‍ . Anodic dis-solution stress corrosion [J]‍. Chinese Science Bulletin , 2000 , 45 24 : 2581 ‍–‍2588‍.

[49] 刘传森 , 李壮壮 , 陈长风‍ . 不锈钢应力腐蚀开裂综述 [J]‍. 表面技术 , 2020 , 49 3 : 1 ‍–‍13‍.
Liu C S , Li Z Z , Chen C F‍ . Stress corrosion cracking of stainless steel [J]‍. Surface Technology , 2020 , 49 3 : 1 ‍–‍13‍.

[50] Payer J, Berry W, Boyd W‍. Stress corrosion cracking: The slow strain-rate technique [M]‍. West Conshohocken: ASTM International, 1979‍.

[51] Zeng Y, Li K‍. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines [J]‍. Corrosion Science, 2020, 165: 108404‍.

[52] Li K, Zeng Y‍. Long-term corrosion and stress corrosion cracking of X65 steel in H2O-saturated supercritical CO2 with SO2 and O2 impurities [J]‍. Construction and Building Materials, 2023, 362: 129746‍.

[53] Sun C, Yan X, Sun J, al et‍. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]‍. Corrosion Science, 2022, 209: 110729‍.

[54] 杨晓龙 , 田永强 , 王旭 , 等‍ . 某N80油管接箍腐蚀断裂失效分析 [J]‍. 焊管 , 2022 , 45 1 : 42 ‍–‍48‍.
Yang X L , Tian Y Q , Wang X , al e t ‍. Failure analysis of corrosion and fracture of N80 tubing coupling [J]‍. Welded Pipe and Tube , 2022 , 45 1 : 42 ‍–‍48‍.

[55] 张亚明 , 臧晗宇 , 董爱华 , 等‍ . 13Cr钢油管腐蚀原因分析 [J]‍. 腐蚀科学与防护技术 , 2009 , 21 5 : 499 ‍–‍501‍.
Zhang Y M , Zang H Y , Dong A H , al e t ‍. Corrosion failure analysis of 13Cr steel oil pipe [J]‍. Corrosion Science and Protection Technology , 2009 , 21 5 : 499 ‍–‍501‍.

[56] 张颖 , 杨坤 , 余柳丝 , 等‍ . 油井管接头螺纹腐蚀与防护研究进展 [J]‍. 科学技术与工程 , 2022 , 22 7 : 2563 ‍–‍2572‍.
Zhang Y , Yang K , Yu L S , al e t ‍. Research progress on thread corrosion and protectionof oil well pipe joint [J]‍. Science Technology and Engineering , 2022 , 22 7 : 2563 ‍–‍2572‍.

[57] 蔡锐 , 赵金龙 , 吴鹏 , 等‍ . L80油管螺纹接头腐蚀原因分析 [J]‍. 理化检验物理分册 , 2019 , 55 4 : 278 ‍–‍281, 288‍.
Cang R , Zhan J L , Wu P , al e t ‍. Cause analysis on corrosion of an L80 tube threaded joint [J]‍. Physical Testing and Chemical Analysis Part A: Physical Testing , 2019 , 55 4 : 278 ‍–‍281, 288‍.

[58] Li Y Z, Wang X, Zhang G A‍. Corrosion behaviour of 13Cr stainless steel under stress and crevice in 3‍.5 wt% NaCl solution [J]‍. Corrosion Science, 2020, 163: 108290‍.

[59] Mu J, Li Y Z, Wang X‍. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]‍. Corrosion Science, 2021, 182: 109310‍.

[60] Zhu L Y, Cui Z Y, Cui H Z, al et‍. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3‍.5 wt% NaCl solution [J]‍. Corrosion Science, 2022, 196: 110039‍.

[61] 胡骞‍ . 缝隙腐蚀的电化学噪声特征及机理研究 [D]‍. 武汉 : 华中科技大学博士学位论文 , 2011 ‍.
Hu Q‍ . Study on the electrochemeical noise characteristics and the mechanism of crevice corrosion [D]‍. Wuhan : Huazhong University of Science and Technology Doctoral dissertation , 2011 ‍.

[62] 宋义全 , 杜翠薇 , 张新 , 等‍ . Cl - 浓度对X70管线钢缝隙腐蚀的影响 [J]‍. 金属学报 , 2009 , 45 9 : 1130 ‍–‍1134‍.
Song Y Q , Du C W , Zhang X , al e t ‍. Influence of Cl - concentration on crevice corrosion of X70 pipe line steel [J]‍. Acta Metallurgica Sinica , 2009 , 45 9 : 1130 ‍–‍1134‍.

[63] 钟显康 , 郑子奇 , 莫林 , 等‍ . 螺纹接头处拉应力作用下的缝隙腐蚀行为 [J]‍. 装备环境工程 , 2020 , 17 11 : 52 ‍–‍59‍.
Zhong X K , Deng Z Q , Mo L , al e t ‍. Crevice corrosion at screwed joint with tensile stress [J]‍. Equipment Environmental Engineering , 2020 , 17 11 : 52 ‍–‍59‍.

[64] Kim S H, Lee J H, Kim J G, al et‍. Effect of the crevice former on the corrosion behavior of 316L stainless steel in chloride ontaining synthetic tap water [J]‍. Metals and Materials International, 2018, 24(3): 516‍–‍524‍.

[65] Carroll S, Carey J W, Dzombak D, al et‍. Review: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments [J]‍. International Journal of Greenhouse Gas Control, 2016, 49: 149‍–‍160‍.

[66] 姚鹏程 , 谢俊峰 , 杨春玉 , 等‍ . 高温高压环境Cl - 浓度和CO 2 分压对不锈钢油管的影响 [J]‍. 全面腐蚀控制 , 2017 , 31 10 : 67 ‍–‍70‍.
Yao P C , Xie J F , Yang C Y , al e t ‍. Effect of Cl - concentration and CO 2 partial pressure on stainless steel tubing under high temperature and high pressure [J]‍. Total Corrosion Control , 2017 , 31 10 : 67 ‍–‍70‍.

[67] 王艳飞‍ . L360钢在H 2 S ‍ –‍CO 2‍ –‍Cl - 体系中元素硫沉积下的点蚀机理 [D]‍. 西安 : 西安石油大学硕士学位论文 , 2021 ‍.
Wang Y F‍ . Study on the pitting corrosion mechanism of L360 steel under the deposition of elemental sulfur in the H 2 S ‍ –‍CO 2‍ –‍Cl - system [D]‍. Xi´an : Xi´an Shiyou University Master´s thesis , 2021 ‍.

[68] Li J, Sun C, Roostaei M, al et‍. Role of Ca2+ in the CO2 corrosion behavior and film characteristics of N80 steel and electroless Ni‍–‍P coating at high temperature and high pressure [J]‍. Materials Chemistry and Physics, 2021, 267: 124618‍.

[69] Xu D, Gu T‍. Bioenergetics explains when and why more severe MIC pitting by SRB can occur [C]‍. Houston: Corrosion 2011 Conference and EXPO, 2011.

[70] Song X, Yang Y, Yu D, al et‍. Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines [J]‍. Journal of Petroleum Science and Engineering, 2016, 146: 803–812‍.

[71] Permeh S, Lau K, Duncan M‍. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers [J]‍. Bioelectrochemistry, 2021, 142(2): 107922‍.

[72] Wu C, Wang Z, Zhang Z, al et‍. Influence of crevice width on sulfate-reducing bacteria (SRB)‍-induced corrosion of stainless steel 316L [J]‍. Corrosion Communications, 2021, 4: 33‍–‍44‍.

[73] Zhang Y, Pang X, Qu S, al et‍. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition [J]‍. Corrosion Science, 2012, 59: 186‍–‍197‍.

[74] Choi Y S, Nešić S‍. Determining the corrosive potential of CO2 transport pipeline in high pCO2‍–‍water environments [J]‍. International Journal of Greenhouse Gas Control, 2011, 5(4): 788‍–‍797‍.

[75] 张昆 , 孙悦 , 王池嘉 , 等‍ . 碳捕集、利用与封存中CO 2 腐蚀与防护研究 [J]‍. 表面技术 , 2022 , 51 9 : 43 ‍–‍52‍.
Zhang K , Sun Y , Wang C J , al e t ‍. Researchon CO 2 corrosion and protection in carbon capture, utilization and storage [J]‍. Surface Technology , 2022 , 51 9 : 43 ‍–‍52‍.

Related Research