Strategic Study of CAE >> 2024, Volume 26, Issue 4 doi: 10.15302/J-SSCAE-2024.04.008
Comprehensive Review and Future Trend Outlook on Energy Utilization Technologies in Low-Carbon Energy Systems
1. Institute of Energy, Peking University, Beijing 100871, China;
2. Institute of Carbon Neutrality, Peking University, Beijing 100871, China;
3. School of Earth and Space Sciences, Peking University, Beijing 100871, China;
4. College of Engineering, Peking University, Beijing 100871, China
Next Previous
Abstract
Energy decarbonization is essential for achieving carbon neutrality. To facilitate the low-carbon transition of the energy system, extensive utilization of low-carbon energy technologies is crucial across various sectors, including primary energy supply, energy processing and conversion, and end-use consumption. This study provides a comprehensive overview of the current status and future trends of key energy utilization technologies from the perspective of low-carbon energy system analysis and optimization. We analyze the application prospects and layout challenges of energy utilization technologies in China’s path toward carbon neutrality from multiple dimensions. Our study highlights the following points: Wind and solar energy, as the fastest-growing renewable energy sources, will continue to play a crucial role in energy supply. The utilization of biomass resources requires systematic evaluation of different conversion technologies, optimizing the allocation of biomass resources across industries. Utilization technologies of secondary energies such as hydrogen and energy storage face challenges related to materials, performance, and lifespan. Overcoming these technical bottlenecks is necessary to achieve low-cost and scalable system applications. Future end-use energy utilization technologies will focus on electrification, which depends on the secure and stable transformation and expansion of electricity distribution systems. Achieving low-carbon transformation in the energy system requires balancing the coordinated development of different energy technologies while addressing non-technical factors such as market dynamics, institutional frameworks, and societal acceptance, ultimately accelerating the decarbonization process.
Keywords
energy system ; low-carbon transition ; primary energy ; secondary energy ; end-use energy utilization ; electrification ; nontechnical factors
References
[ 1 ] Energy Institute. Statistical review of world energy 2023 [R]. London: Energy Institute, 2022.
[ 2 ]
金之钧, 江亿, 戴民汉, 等. 碳中和概论 [M]. 北京: 北京大学出版社, 2023.
Jin Z J, Jiang Y, Dai M H, et al. Introduction to carbon neutrality [M]. Beijing: Peking University Press, 2023.
[ 3 ] International Renewable Energy Agency. Renewable energy statistics 2023 [R]: Bonn: International Renewable Energy Agency, 2023.
[ 4 ]
国家发展和改革委员会能源研究所. 中国2050年光伏发展展望(2019) [R]. 北京: 国家发展和改革委员会能源研究所, 2019.
Energy Research Institute of the National Development and Reform Commission. China´s photovoltaic development outlook for 2050 (2019) [R]. Beijing: Energy Research Institute of the National Development and Reform Commission, 2019.
[ 5 ] AR6 scenario explorer and database [EB/OL]. (2023-01-19)[2024-05-07]. https://iiasa.ac.at/models-tools-data/ar6-scenario-explorer-and-database.
[ 6 ] Guo H, Cui J, Li J H. Biomass power generation in China: Status, policies and recommendations [J]. Energy Reports, 2022, 8: 687‒696.
[ 7 ] Zhang S, Chen W Y. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework [J]. Nature Communications, 2022, 13(1): 87.
[ 8 ]
鲁玺. 中国碳中和目标下的风光技术展望 [R]. 北京: 清华大学碳中和研究院, 2023.
Lu X. Technology outlook on wind and solar power toward China´s carbon neutrality goal [R]. Beijing: Institute for Carbon Neutrality, Tsinghua University, 2023.
[ 9 ]
国家能源局. 2022年光伏发电建设运行情况 [EB/OL]. (2023-02-17)[2024-05-07]. https://www.nea.gov.cn/2023-02/17/c_131 0698128.htm.
National Energy Administration. Photovoltaic power generation construction and operation in 2022 [EB/OL]. (2023-02-17)[2024-05-07]. https://www.nea.gov.cn/2023-02/17/c_1310698128.htm.
[10] International Renewable Energy Agency. Renewable power generation costs in 2022 [R]. Bonn: International Renewable Energy Agency, 2023.
[11] International Energy Agency. Net zero by 2050: A roadmap for the global energy sector [R]. Paris: International Energy Agency, 2021.
[12] International Renewable Energy Agency. Global renewables outlook: Energy transformation 2050 [R]. Bonn: International Renewable Energy Agency, 2020.
[13] Cellura M, Luu L Q, Guarino F, et al. A review on life cycle environmental impacts of emerging solar cells [J]. Science of the Total Environment, 2024, 908: 168019.
[14] Deng S, Cai Y L, Roemer U, et al. Mitigating parasitic absorption in poly-Si contacts for TOPCon solar cells: A comprehensive review [J]. Solar Energy Materials and Solar Cells, 2024, 267: 112704.
[15] Green M A, Dunlop E D, Yoshita M, et al. Solar cell efficiency tables (Version 62) [J]. Progress in Photovoltaics: Research and Applications, 2023, 31(7): 651‒663.
[16] National Renewable Energy Laboratory. Best research: Cell efficiency chart [EB/OL]. (2024-04-04)[2024-05-07]. https://www.nrel.gov/pv/cell-efficiency.html.
[17] Allouhi A, Rehman S, Buker M S, et al. Recent technical approaches for improving energy efficiency and sustainability of PV and PV-T systems: A comprehensive review [J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103026.
[18] Trina Solar claims 740 W output for TOPCon PV module [EB/OL]. (2024-04-23)[2024-05-07]. https://www.pv-magazine.com/2024/04/23/trina-solar-claims-740-w-output-for-topcon-pv-module/.
[19] Alami A H, Olabi A G, Mdallal A, et al. Concentrating solar power (CSP) technologies: Status and analysis [J]. International Journal of Thermofluids, 2023, 18: 100340.
[20] Yerudkar A N, Kumar D, Dalvi V H, et al. Economically feasible solutions in concentrating solar power technology specifically for heliostats—A review [J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113825.
[21] Wang Z, Shi J, Zhao Y. Technology roadmap: China wind energy development roadmap 2050 [R]. Paris: International Energy Agency and Energy Research Institute, 2011.
[22] European Technology and Innovation Platform on Wind Energy. ETIPWind roadmap [R]. Brussels: European Technology and Innovation Platform on Wind Energy, 2019.
[23] Bošnjaković M, Katinić M, Santa R, et al. Wind turbine technology trends [J]. Applied Sciences, 2022, 12(17): 8653.
[24] Gao Y, Ma S X, Wang T, et al. Assessing the wind energy potential of China in considering its variability/intermittency [J]. Energy Conversion and Management, 2020, 226: 113580.
[25] Liu S J, Abrahamson L P, Scott G M. Biorefinery: Ensuring biomass as a sustainable renewable source of chemicals, materials, and energy [J]. Biomass and Bioenergy, 2012, 39: 1‒4.
[26] Gilbert A, Sovacool B K. Emissions accounting for biomass energy with CCS [J]. Nature Climate Change, 2015, 5: 495‒496.
[27] Ashokkumar V, Venkatkarthick R, Jayashree S, et al. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts—A critical review [J]. Bioresource Technology, 2022, 344: 126195.
[28] Lin L F, Han X, Han B X, et al. Emerging heterogeneous catalysts for biomass conversion: Studies of the reaction mechanism [J]. Chemical Society Reviews, 2021, 50(20): 11270‒11292.
[29] Deng X, Teng F, Chen M P, et al. Exploring negative emission potential of biochar to achieve carbon neutrality goal in China [J]. Nature Communications, 2024, 15(1): 1085.
[30] Spierling S, Knüpffer E, Behnsen H, et al. Bio-based plastics—A review of environmental, social and economic impact assessments [J]. Journal of Cleaner Production, 2018, 185: 476‒491.
[31] Shen L, Worrell E, Patel M. Present and future development in plastics from biomass [J]. Biofuels, Bioproducts and Biorefining, 2010, 4(1): 25‒40.
[32] Brauns J, Turek T. Alkaline water electrolysis powered by renewable energy: A review [J]. Processes, 2020, 8(2): 248.
[33] Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review [J]. Renewable and Sustainable Energy Reviews, 2019, 111: 1‒14.
[34] Hauch A, Küngas R, Blennow P, et al. Recent advances in solid oxide cell technology for electrolysis [J]. Science, 2020, 370(6513): eaba6118.
[35]
中国氢能源及燃料电池产业创新战略联盟. 中国氢能源及燃料电池产业发展报告2022 [M]. 北京: 人民日报出版社, 2023.
National Alliance of Hydrogen and Fuel Cell. China hydrogen energy and fuel cell industry development report 2022 [M]. Beijing: People´s Daily Press, 2023.
[36]
中国氢能源及燃料电池产业创新战略联盟. 中国氢能源及燃料电池产业发展报告2020 [M]. 北京: 人民日报出版社, 2021.
National Alliance of Hydrogen and Fuel Cell. China hydrogen energy and fuel cell industry development report 2020 [M]. Beijing: People´s Daily Press, 2021.
[37] Schmidt O, Hawkes A, Gambhir A, et al. The future cost of electrical energy storage based on experience rates [J]. Nature Energy, 2017, 2(8): 17110.
[38] Chen H S, Cong T N, Yang W, et al. Progress in electrical energy storage system: A critical review [J]. Progress in Natural Science, 2009, 19(3): 291‒312.
[39] International Energy Agency. Projected costs of generating electricity 2020 [R]. Paris: International Energy Agency, 2020.
[40]
吴全, 孙春良, 郭海涛, 等. 压缩气体储能技术经济特点和发展方向探析 [J]. 油气与新能源, 2023, 35(6): 90‒98.
Wu Q, Sun C L, Guo H T, et al. Analyzing the technological and financial features and prospects for compressed gas energy storage technologies [J]. Petroleum and New Energy, 2023, 35(6): 90‒98.
[41]
张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势 [J]. 储能科学与技术, 2023, 12(4): 1295‒1301.
Zhang W L, Gu H, Zhang C, et al. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295‒1301.
[42]
张胜杰. 清洁制氢有望取得长足进展 [N]. 中国能源报, 2023-09-18 (15).
Zhang S J. Clean hydrogen production expected to make great strides [N]. China Energy News, 2023-09-18 (15).
[43]
中国能源研究会储能专业委员会, 中关村储能产业技术联盟. 储能产业研究白皮书2023 [R]. 北京: 中国能源研究会储能专业委员会, 中关村储能产业技术联盟, 2023.
Energy Storage Specialized Committee of China Energy Research Society, China Energy Storage Alliance. Energy storage industry research white paper 2023 [R]. Beijing: Energy Storage Specialized Committee of China Energy Research Society, China Energy Storage Alliance, 2023.
[44] Zakeri B, Syri S. Electrical energy storage systems: A comparative life cycle cost analysis [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 569‒596.
[45]
陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展 [J]. 储能科学与技术, 2023, 12(5): 1516‒1552.
Chen H S, Li H, Xu Y J, et al. Research progress on energy storage technologies of China in 2022 [J]. Energy Storage Science and Technology, 2023, 12(5): 1516‒1552.
[46]
艾欣, 董春发. 储能技术在新能源电力系统中的研究综述 [J]. 现代电力, 2015, 32(5): 1‒9.
Ai X, Dong C F. Review on the application of energy storage technology in power system with renewable energy sources [J]. Modern Electric Power, 2015, 32(5): 1‒9.
[47] Mostafa M H, Abdel A S H E, Ali S G, et al. Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics [J]. Journal of Energy Storage, 2020, 29: 101345.
[48]
中关村储能产业技术联盟. 全球储能数据库 [EB/OL]. (2023-12-01)[2024-05-07]. http://www.esresearch.com.cn/.
China Energy Storage Alliance. Global energy storage database [EB/OL]. (2023-12-01)[2024-05-07]. http://www.esresearch.com.cn/.
[49] Inderwildi O, Zhang C, Wang X N, et al. The impact of intelligent cyber-physical systems on the decarbonization of energy [J]. Energy & Environmental Science, 2020, 13(3): 744‒771.
[50]
薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述 [J]. 综合智慧能源, 2023, 45(9): 48‒58.
Xue F, Ma X M, You Y J. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48‒58.
[51] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices [J]. Science, 2011, 334(6058): 928‒935.
[52]
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究 [J]. 中国工程科学, 2021, 23(6): 1‒14.
Shu Y B, Zhang L Y, Zhang Y Z, et al. Carbon peak and carbon neutrality path for China´s power industry [J]. Strategic Study of CAE, 2021, 23(6): 1‒14.
[53] Azevedo I, Bataille C, Bistline J, et al. Net-zero emissions energy systems: What we know and do not know [J]. Energy and Climate Change, 2021, 2: 100049.
[54]
倪龙, 董世豪, 郑渊博, 等. 热泵技术在中低温热能生产中的减碳效益 [J]. 暖通空调, 2022, 52(11): 23‒34.
Ni L, Dong S H, Zheng Y B, et al. Carbon reduction benefits of heat pump in medium-low temperature heat production [J]. Heating Ventilating & Air Conditioning, 2022, 52(11): 23‒34.
[55] Yan H Z, Zhang C, Shao Z, et al. The underestimated role of the heat pump in achieving China´s goal of carbon neutrality by 2060 [J]. Engineering, 2023, 23: 13‒18.
[56]
江亿, 胡姗. 中国建筑部门实现碳中和的路径 [J]. 暖通空调, 2021, 51(5): 1‒13.
Jiang Y, Hu S. Paths to carbon neutrality in China´s building sector [J]. Heating Ventilating & Air Conditioning, 2021, 51(5): 1‒13.
[57] International Energy Agency. The future of heat pumps in China [R]: Paris: International Energy Agency, 2024.
[58]
饶宏, 李立浧, 郭晓斌, 等. 我国能源技术革命形势及方向分析 [J]. 中国工程科学, 2018, 20(3): 9‒16.
Rao H, Li L C, Guo X B, et al. Study on situation and direction of China energy technology revolution [J]. Strategic Study of CAE, 2018, 20(3): 9‒16.
[59] Liang Z, Zhang Y, Xu H F, et al. Homogenizing out-of-plane cation composition in perovskite solar cells [J]. Nature, 2023, 624(7992): 557‒563.
[60] Kantola I B, Masters M D, Beerling D J, et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering [J]. Biology Letters, 2017, 13(4): 20160714.
[61] Song Z, Cao S L, Yang H X. Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches [J]. Applied Energy, 2023, 339: 121005.
[62] Kim Y J, Soh M, Cho S H. Identifying optimal financial budget distributions for the low-carbon energy transition between emerging and developed countries [J]. Applied Energy, 2022, 326: 119967.
[63] Shih C F, Zhang T, Li J H, et al. Powering the future with liquid sunshine [J]. Joule, 2018, 2(10): 1925‒1949.
[64] Brookes N J, Locatelli G. Power plants as megaprojects: Using empirics to shape policy, planning, and construction management [J]. Utilities Policy, 2015, 36: 57‒66.
[65]
赵云龙, 孔庚, 李卓然, 等. 全球能源转型及我国能源革命战略系统分析 [J]. 中国工程科学, 2021, 23(1): 15‒23.
Zhao Y L, Kong G, Li Z R, et al. Strategic analysis of global energy transition and China´s energy revolution [J]. Strategic Study of CAE, 2021, 23(1): 15‒23.
[66] United Nations Conference on Trade and Development. World investment report 2023 [R]. New York: United Nations Conference on Trade and Development, 2023.
[67] International Energy Agency. World energy investment 2023 [R]. Paris: International Energy Agency, 2023.