2018-10-31 , Volume 4 Issue 5

Cover illustration

  •  

    Although various approaches have been proposed for the ecological restoration of water bodies such as rivers, lakes, marshes, and estuaries, it is essential to consider the connections among these water bodies in a watershed and explore sustainable management from a systems perspective. Watershed ecology treats a watershed, which is a natural hydrological unit, as a system, and explores the interactions that occur among social activities, economic activities, and natural eco-hydrological processes. This issue introduces new progress in watershed ecology and offers tools for managers to assess the effects of environmental changes on ecosystem health and to create strategies for ecological restoration from a systems perspective.

     

    Download cover

  • Select all
    Editorial
  • Editorial
    Aiming to Be a World-Class Journal Leading in Innovation: A Letter from the Editors-in-Chief
    [Author(id=1166067394872533453, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838295486161340, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067394985779663, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838295486161340, authorId=1166067394872533453, language=EN, stringName=Ji Zhou, firstName=Ji, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Editor-in-Chief, Honorary Chairman of the Governing Board of the Chinese Academy of Engineering, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067395078054352, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838295486161340, authorId=1166067394872533453, language=CN, stringName=周济, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Editor-in-Chief, Honorary Chairman of the Governing Board of the Chinese Academy of Engineering, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067395161940434, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838295486161340, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067395287769556, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838295486161340, authorId=1166067395161940434, language=EN, stringName=Jianfeng Chen, firstName=Jianfeng, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Executive Editor-in-Chief, Secretary General of the Chinese Academy of Engineering, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067395371655637, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838295486161340, authorId=1166067395161940434, language=CN, stringName=陈建峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Executive Editor-in-Chief, Secretary General of the Chinese Academy of Engineering, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ji Zhou , Jianfeng Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial
    Watershed Ecology and Its Applications
    [Author(id=1166066690422399634, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838088279154829, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066690565005972, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838088279154829, authorId=1166066690422399634, language=EN, stringName=Zhifeng Yang, firstName=Zhifeng, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066690669863573, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838088279154829, authorId=1166066690422399634, language=CN, stringName=杨志峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Zhifeng Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial
    Applications of Geophysics in Resource Detection and Environmental Protection
    [Author(id=1166067191977272029, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067192111489759, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, authorId=1166067191977272029, language=EN, stringName=Suping Peng, firstName=Suping, middleName=null, lastName=Peng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067192220541664, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, authorId=1166067191977272029, language=CN, stringName=彭苏萍, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067192325399266, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067192463811300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, authorId=1166067192325399266, language=EN, stringName=Jianghai Xia, firstName=Jianghai, middleName=null, lastName=Xia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Earth Sciences, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067192585446117, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, authorId=1166067192325399266, language=CN, stringName=夏江海, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Earth Sciences, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067192694498023, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067192828715753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, authorId=1166067192694498023, language=EN, stringName=Jiulong Cheng, firstName=Jiulong, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067192929379050, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838293049270715, authorId=1166067192694498023, language=CN, stringName=程久龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Suping Peng , Jianghai Xia , Jiulong Cheng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Topic Insights
    Engineers: The Key to Sustainable Water Use
    [Author(id=1166066506468614208, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837769734348890, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066506607026244, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837769734348890, authorId=1166066506468614208, language=EN, stringName=Neil Andrew, firstName=Neil, middleName=null, lastName=Andrew, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chair of Australia's Murray–Darling Basin Authority and Fellow of the Australian Academy of Technology and Engineering, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066506707689541, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837769734348890, authorId=1166066506468614208, language=CN, stringName=Neil Andrew, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chair of Australia's Murray–Darling Basin Authority and Fellow of the Australian Academy of Technology and Engineering, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Neil Andrew

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
    Sustainable Resource Use in Enhancing Agricultural Development in China
    [Author(id=1166066509723394130, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066509849223252, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, authorId=1166066509723394130, language=EN, stringName=Jianbo Shen, firstName=Jianbo, middleName=null, lastName=Shen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National Academy of Agriculture Green Development, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066509941497941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, authorId=1166066509723394130, language=CN, stringName=申建波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National Academy of Agriculture Green Development, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066510033772631, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066510159601753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, authorId=1166066510033772631, language=EN, stringName=Fusuo Zhang, firstName=Fusuo, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National Academy of Agriculture Green Development, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066510251876442, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, authorId=1166066510033772631, language=CN, stringName=张福锁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National Academy of Agriculture Green Development, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066510348345436, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066510469980254, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, authorId=1166066510348345436, language=EN, stringName=Kadambot H.M. Siddique, firstName=Kadambot H.M., middleName=null, lastName=Siddique, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Hackett Professor and Director of the UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066510566449247, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838083820609675, authorId=1166066510348345436, language=CN, stringName=Kadambot H.M. Siddique, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Hackett Professor and Director of the UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jianbo Shen , Fusuo Zhang , Kadambot H.M. Siddique

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research Watershed Ecology—Article
    A New Method of Assessing Environmental Flows in Channelized Urban Rivers
    [Author(id=1166067849484755579, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067849585418876, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067849484755579, language=EN, stringName=Xin-An Yin, firstName=Xin-An, middleName=null, lastName=Yin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067849686082173, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067849484755579, language=CN, stringName=尹心安, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067849786745471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067849874825856, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067849786745471, language=EN, stringName=Zhifeng Yang, firstName=Zhifeng, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067849971294849, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067849786745471, language=CN, stringName=杨志峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067850063569539, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067850155844228, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067850063569539, language=EN, stringName=Enze Zhang, firstName=Enze, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067850248118917, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067850063569539, language=CN, stringName=张恩泽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067850348782215, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067850462028424, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067850348782215, language=EN, stringName=Zhihao Xu, firstName=Zhihao, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067850575274633, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067850348782215, language=CN, stringName=徐志豪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067851556741771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067851665793676, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067851556741771, language=EN, stringName=Yanpeng Cai, firstName=Yanpeng, middleName=null, lastName=Cai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067851783234189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067851556741771, language=CN, stringName=蔡宴朋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067851896480400, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067852005532308, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067851896480400, language=EN, stringName=Wei Yang, firstName=Wei, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067852118778520, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838777738846717, authorId=1166067851896480400, language=CN, stringName=杨薇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xin-An Yin , Zhifeng Yang , Enze Zhang , Zhihao Xu , Yanpeng Cai , Wei Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Watershed Ecology—Article
    A Floating Island Treatment System for the Removal of Phosphorus from Surface Waters
    [Author(id=1166067920540459120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067920678871154, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067920540459120, language=EN, stringName=Mark T. Brown, firstName=Mark T., middleName=null, lastName=Brown, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067920783728755, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067920540459120, language=CN, stringName=Mark T. Brown, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067920884392053, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067921018609783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067920884392053, language=EN, stringName=Treavor Boyer, firstName=Treavor, middleName=null, lastName=Boyer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067921123467384, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067920884392053, language=CN, stringName=Treavor Boyer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067921224130682, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067921358348412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067921224130682, language=EN, stringName=R.J. Sindelar, firstName=R.J., middleName=null, lastName=Sindelar, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067921467400317, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067921224130682, language=CN, stringName=R.J. Sindelar, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067921568063615, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067921702281345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067921568063615, language=EN, stringName=Sam Arden, firstName=Sam, middleName=null, lastName=Arden, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067921811333250, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067921568063615, language=CN, stringName=Sam Arden, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067921911996548, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067922050408582, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067921911996548, language=EN, stringName=Amar Persaud, firstName=Amar, middleName=null, lastName=Persaud, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067922159460487, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067921911996548, language=CN, stringName=Amar Persaud, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067922260123785, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067922394341515, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067922260123785, language=EN, stringName=Sherry Brandt-Williams, firstName=Sherry, middleName=null, lastName=Brandt-Williams, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b St. Johns River Water Management District, Palatka, FL 32177, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067922499199116, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838846143750959, authorId=1166067922260123785, language=CN, stringName=Sherry Brandt-Williams, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b St. Johns River Water Management District, Palatka, FL 32177, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mark T. Brown , Treavor Boyer , R.J. Sindelar , Sam Arden , Amar Persaud , Sherry Brandt-Williams

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Watershed Ecology—Article
    Application of Hydrogen Peroxide as an Environmental Stress Indicator for Vegetation Management
    [Author(id=1166066774883099129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066775021511163, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, authorId=1166066774883099129, language=EN, stringName=Takashi Asaeda, firstName=Takashi, middleName=null, lastName=Asaeda, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066775130563068, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, authorId=1166066774883099129, language=CN, stringName=Takashi Asaeda, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066775231226366, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066775369638400, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, authorId=1166066775231226366, language=EN, stringName=Senavirathna Mudalige Don Hiranya Jayasanka, firstName=Senavirathna Mudalige Don Hiranya, middleName=null, lastName=Jayasanka, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066775478690305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, authorId=1166066775231226366, language=CN, stringName=Senavirathna Mudalige Don Hiranya Jayasanka, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066775579353603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066775717765637, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, authorId=1166066775579353603, language=EN, stringName=Li-Ping Xia, firstName=Li-Ping, middleName=null, lastName=Xia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066775822623238, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, authorId=1166066775579353603, language=CN, stringName=Li-Ping Xia, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066775923286536, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066776065892874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, authorId=1166066775923286536, language=EN, stringName=Abner Barnuevo, firstName=Abner, middleName=null, lastName=Barnuevo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066776166556171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838165190107650, authorId=1166066775923286536, language=CN, stringName=Abner Barnuevo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Environmental Science and Technology, Saitama University, Saitama 338-8570, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Takashi Asaeda , Senavirathna Mudalige Don Hiranya Jayasanka , Li-Ping Xia , Abner Barnuevo

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Watershed Ecology—Article
    Uncertainty Quantification for Multivariate Eco-Hydrological Risk in the Xiangxi River within the Three Gorges Reservoir Area in China
    [Author(id=1166067740319604839, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067740458016873, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, authorId=1166067740319604839, language=EN, stringName=Yurui Fan, firstName=Yurui, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Engineering, Design and Physical Sciences, Brunel University, London, Uxbridge, Middlesex, UB8 3PH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067740567068778, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, authorId=1166067740319604839, language=CN, stringName=Yurui Fan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Engineering, Design and Physical Sciences, Brunel University, London, Uxbridge, Middlesex, UB8 3PH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067740667732076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067740806144110, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, authorId=1166067740667732076, language=EN, stringName=Guohe Huang, firstName=Guohe, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067740906807407, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, authorId=1166067740667732076, language=CN, stringName=Guohe Huang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067741011665009, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067741150077043, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, authorId=1166067741011665009, language=EN, stringName=Yin Zhang, firstName=Yin, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c College of Engineering and Mines, University of Alaska Fairbanks, Fairbanks, AK 99775, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067741246546036, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, authorId=1166067741011665009, language=CN, stringName=Yin Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c College of Engineering and Mines, University of Alaska Fairbanks, Fairbanks, AK 99775, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067741351403638, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067741489815672, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, authorId=1166067741351403638, language=EN, stringName=Yongping Li, firstName=Yongping, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067741586284665, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838889189892184, authorId=1166067741351403638, language=CN, stringName=Yongping Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yurui Fan , Guohe Huang , Yin Zhang , Yongping Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Watershed Ecology—Article
    An Ecologically Oriented Operation Strategy for a Multi-Reservoir System: A Case Study of the Middle and Lower Han River Basin, China
    [Author(id=1166067627446690094, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067627597685040, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067627446690094, language=EN, stringName=Hao Wang, firstName=Hao, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067627710931250, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067627446690094, language=CN, stringName=王浩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067627819983156, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067627966783798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067627819983156, language=EN, stringName=Xiaohui Lei, firstName=Xiaohui, middleName=null, lastName=Lei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067628080030007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067627819983156, language=CN, stringName=雷晓辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067628193276217, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067628335882556, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067628193276217, language=EN, stringName=Denghua Yan, firstName=Denghua, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067628449128765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067628193276217, language=CN, stringName=严登华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067628566569279, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067628713369921, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067628566569279, language=EN, stringName=Xu Wang, firstName=Xu, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067628822421826, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067628566569279, language=CN, stringName=王旭, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067628935668036, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067629082468678, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067628935668036, language=EN, stringName=Shuyue Wu, firstName=Shuyue, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067629191520584, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067628935668036, language=CN, stringName=吴书悦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067629308961098, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067629451567436, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067629308961098, language=EN, stringName=Zhengjie Yin, firstName=Zhengjie, middleName=null, lastName=Yin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Water Resources Department, Yangtze River Scientific Research Institute, Wuhan 430010, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067629564813645, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067629308961098, language=CN, stringName=尹正杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Water Resources Department, Yangtze River Scientific Research Institute, Wuhan 430010, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067629673865551, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067629829054801, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067629673865551, language=EN, stringName=Wenhua Wan, firstName=Wenhua, middleName=null, lastName=Wan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067629938106706, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838780385452543, authorId=1166067629673865551, language=CN, stringName=万文华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hao Wang , Xiaohui Lei , Denghua Yan , Xu Wang , Shuyue Wu , Zhengjie Yin , Wenhua Wan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Watershed Ecology—Article
    Environmental Data Acquisition, Elaboration and Integration: Preliminary Application to a Vulnerable Mountain Landscape and Village (Novalesa, NW Italy)
    [Author(id=1166066730767409280, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066730905821314, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066730767409280, language=EN, stringName=Massimiliano Lega, firstName=Massimiliano, middleName=null, lastName=Lega, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Engineering, Parthenope University of Napoli, Naples 80143, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066731006484611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066730767409280, language=CN, stringName=Massimiliano Lega, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Engineering, Parthenope University of Napoli, Naples 80143, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066731111342213, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066731283308680, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066731111342213, language=EN, stringName=Marco Casazza, firstName=Marco, middleName=null, lastName=Casazza, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Department of Engineering, Parthenope University of Napoli, Naples 80143, Italy
    c Department of Science and Technology, Parthenope University of Napoli, Naples 80143, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066731379777673, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066731111342213, language=CN, stringName=Marco Casazza, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Department of Engineering, Parthenope University of Napoli, Naples 80143, Italy
    c Department of Science and Technology, Parthenope University of Napoli, Naples 80143, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066731488829579, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066731623047312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066731488829579, language=EN, stringName=Laura Turconi, firstName=Laura, middleName=null, lastName=Turconi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute for Hydro-Geological Protection Research, National Research Council (CNR-IRPI), Turin 10135, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066731723710610, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066731488829579, language=CN, stringName=Laura Turconi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute for Hydro-Geological Protection Research, National Research Council (CNR-IRPI), Turin 10135, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066731832762518, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066731966980251, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066731832762518, language=EN, stringName=Fabio Luino, firstName=Fabio, middleName=null, lastName=Luino, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute for Hydro-Geological Protection Research, National Research Council (CNR-IRPI), Turin 10135, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066732071837853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066731832762518, language=CN, stringName=Fabio Luino, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute for Hydro-Geological Protection Research, National Research Council (CNR-IRPI), Turin 10135, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066732176695457, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066732310913187, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066732176695457, language=EN, stringName=Domenico Tropeano, firstName=Domenico, middleName=null, lastName=Tropeano, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute for Hydro-Geological Protection Research, National Research Council (CNR-IRPI), Turin 10135, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066732411576485, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066732176695457, language=CN, stringName=Domenico Tropeano, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute for Hydro-Geological Protection Research, National Research Council (CNR-IRPI), Turin 10135, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066732520628393, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066732654846125, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066732520628393, language=EN, stringName=Gabriele Savio, firstName=Gabriele, middleName=null, lastName=Savio, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute for Hydro-Geological Protection Research, National Research Council (CNR-IRPI), Turin 10135, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066732755509423, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066732520628393, language=CN, stringName=Gabriele Savio, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute for Hydro-Geological Protection Research, National Research Council (CNR-IRPI), Turin 10135, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066732856172725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066732986196152, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066732856172725, language=EN, stringName=Sergio Ulgiati, firstName=Sergio, middleName=null, lastName=Ulgiati, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Science and Technology, Parthenope University of Napoli, Naples 80143, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066733082665146, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066732856172725, language=CN, stringName=Sergio Ulgiati, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Science and Technology, Parthenope University of Napoli, Naples 80143, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066733187522750, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066733317546178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066733187522750, language=EN, stringName=Theodore Endreny, firstName=Theodore, middleName=null, lastName=Endreny, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066733422403780, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838109816905921, authorId=1166066733187522750, language=CN, stringName=Theodore Endreny, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Massimiliano Lega , Marco Casazza , Laura Turconi , Fabio Luino , Domenico Tropeano , Gabriele Savio , Sergio Ulgiati , Theodore Endreny

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Watershed Ecology—Article
    A Comparison of SWAT Model Calibration Techniquesfor Hydrological Modeling in the Ganga River Watershed
    [Author(id=1166067686150169428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067687198745433, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, authorId=1166067686150169428, language=EN, stringName=Nikita Shivhare, firstName=Nikita, middleName=null, lastName=Shivhare, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067687324574555, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, authorId=1166067686150169428, language=CN, stringName=Nikita Shivhare, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067687433626461, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067687576232800, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, authorId=1166067687433626461, language=EN, stringName=Prabhat Kumar Singh Dikshit, firstName=Prabhat Kumar Singh, middleName=null, lastName=Dikshit, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067687685284706, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, authorId=1166067687433626461, language=CN, stringName=Prabhat Kumar Singh Dikshit, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067687802725221, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067687945331561, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, authorId=1166067687802725221, language=EN, stringName=Shyam Bihari, firstName=Shyam, middleName=null, lastName=Bihari, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067688058577771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838837260215005, authorId=1166067687802725221, language=CN, stringName=Shyam Bihari Dwivedi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Nikita Shivhare , Prabhat Kumar Singh Dikshit , Shyam Bihari

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Applied Geophysics—Review
    Research Developments and Prospects on Microseismic Source Location in Mines
    [Author(id=1166066598760079725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066598881714543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066598760079725, language=EN, stringName=Jiulong Cheng, firstName=Jiulong, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066598978183536, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066598760079725, language=CN, stringName=程久龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066599070458226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066599225647477, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066599070458226, language=EN, stringName=Guangdong Song, firstName=Guangdong, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
    b Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066599322116470, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066599070458226, language=CN, stringName=宋广东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
    b Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066599414391160, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066599527637370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066599414391160, language=EN, stringName=Xiaoyun Sun, firstName=Xiaoyun, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066599640883579, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066599414391160, language=CN, stringName=孙晓云, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066599733158269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066599858987391, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066599733158269, language=EN, stringName=Laifu Wen, firstName=Laifu, middleName=null, lastName=Wen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066599951262080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066599733158269, language=CN, stringName=温来福, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066600043536770, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066600169365892, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066600043536770, language=EN, stringName=Fei Li, firstName=Fei, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066600257446277, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837832258838692, authorId=1166066600043536770, language=CN, stringName=李飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jiulong Cheng , Guangdong Song , Xiaoyun Sun , Laifu Wen , Fei Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Applied Geophysics—Article
    Reverse-Time Migration from Rugged Topography to Image Ground-Penetrating Radar Data in Complex Environments
    [Author(id=1166067467392050016, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067467522073442, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, authorId=1166067467392050016, language=EN, stringName=John H. Bradford, firstName=John H., middleName=null, lastName=Bradford, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Geosciences, Boise State University, Boise, ID 83725-1535, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067467631125347, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, authorId=1166067467392050016, language=CN, stringName=John H. Bradford, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Geosciences, Boise State University, Boise, ID 83725-1535, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067467727594341, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067467861812071, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, authorId=1166067467727594341, language=EN, stringName=Janna Privette, firstName=Janna, middleName=null, lastName=Privette, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Geosciences, Boise State University, Boise, ID 83725-1535, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067467962475368, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, authorId=1166067467727594341, language=CN, stringName=Janna Privette, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Geosciences, Boise State University, Boise, ID 83725-1535, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067468063138666, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067468193162092, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, authorId=1166067468063138666, language=EN, stringName=David Wilkins, firstName=David, middleName=null, lastName=Wilkins, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Geosciences, Boise State University, Boise, ID 83725-1535, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067468293825390, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, authorId=1166067468063138666, language=CN, stringName=David Wilkins, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Geosciences, Boise State University, Boise, ID 83725-1535, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067468394488690, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067468528706423, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, authorId=1166067468394488690, language=EN, stringName=Richard Ford, firstName=Richard, middleName=null, lastName=Ford, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geosciences, Weber State University, Ogden, UT 84408-2507, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067468633564027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838351182324227, authorId=1166067468394488690, language=CN, stringName=Richard Ford, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geosciences, Weber State University, Ogden, UT 84408-2507, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] John H. Bradford , Janna Privette , David Wilkins , Richard Ford

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Applied Geophysics—Article
    Combined Application of Wide-Field Electromagnetic Method and Flow Field Fitting Method for High-Resolution Exploration: A Case Study of the Anjialing No. 1 Coal Mine
    [Author(id=1166067348659691927, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838420321231640, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067348869407131, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838420321231640, authorId=1166067348659691927, language=EN, stringName=Jishan He, firstName=Jishan, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, Central South University, Changsha 410083, China
    b Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Central South University, Changsha 410083, China
    c School of Geosciences and Info-Physics, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067348974264732, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838420321231640, authorId=1166067348659691927, language=CN, stringName=何继善, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, Central South University, Changsha 410083, China
    b Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Central South University, Changsha 410083, China
    c School of Geosciences and Info-Physics, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jishan He

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Applied Geophysics—Article
    Spatial Discrimination of Complex, Low-Relief Quaternary Siliciclastic Strata Using Airborne Lidar and Near-Surface Geophysics: An Example from the Texas Coastal Plain, USA
    [Author(id=1166067275653636318, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067275771076832, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, authorId=1166067275653636318, language=EN, stringName=Jeffrey G. Paine, firstName=Jeffrey G., middleName=null, lastName=Paine, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067275884323041, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, authorId=1166067275653636318, language=CN, stringName=Jeffrey G. Paine, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067275976597731, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067276102426853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, authorId=1166067275976597731, language=EN, stringName=Edward W. Collins, firstName=Edward W., middleName=null, lastName=Collins, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067276190507238, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, authorId=1166067275976597731, language=CN, stringName=Edward W. Collins, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166067276282781928, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067276400222442, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, authorId=1166067276282781928, language=EN, stringName=Lucie Costard, firstName=Lucie, middleName=null, lastName=Costard, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067276496691435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838353136869914, authorId=1166067276282781928, language=CN, stringName=Lucie Costard, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jeffrey G. Paine , Edward W. Collins , Lucie Costard

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Applied Geophysics—Article
    Imposing Active Sources during High-Frequency Passive Surface-Wave Measurement
    [Author(id=1166066644872258125, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066645006475855, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066644872258125, language=EN, stringName=Feng Cheng, firstName=Feng, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066645107139152, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066644872258125, language=CN, stringName=程逢, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066645207802450, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066645346214484, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066645207802450, language=EN, stringName=Jianghai Xia, firstName=Jianghai, middleName=null, lastName=Xia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Earth Sciences, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066645446877781, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066645207802450, language=CN, stringName=夏江海, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Earth Sciences, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066645547541079, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066645681758809, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066645547541079, language=EN, stringName=Chao Shen, firstName=Chao, middleName=null, lastName=Shen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Measurement and Testing Engineering, China Jiliang University, Hangzhou 310018, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066645774033498, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066645547541079, language=CN, stringName=沈超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Measurement and Testing Engineering, China Jiliang University, Hangzhou 310018, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066645866308188, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066645996331614, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066645866308188, language=EN, stringName=Yue Hu, firstName=Yue, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066646088606303, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066645866308188, language=CN, stringName=胡悦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066646185075297, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066646306710115, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066646185075297, language=EN, stringName=Zongbo Xu, firstName=Zongbo, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Geosciences, Boise State University, Boise, ID 83725, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066646398984804, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066646185075297, language=CN, stringName=徐宗博, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Geosciences, Boise State University, Boise, ID 83725, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066646495453798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066646617088616, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066646495453798, language=EN, stringName=Binbin Mi, firstName=Binbin, middleName=null, lastName=Mi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066646713557609, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837862831120696, authorId=1166066646495453798, language=CN, stringName=宓彬彬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Feng Cheng , Jianghai Xia , Chao Shen , Yue Hu , Zongbo Xu , Binbin Mi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Applied Geophysics—Article
    SH-Mode Seismic-Reflection Imaging of Earthfill Dams
    [Author(id=1166067271094427830, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838350351852033, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166067271203479736, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838350351852033, authorId=1166067271094427830, language=EN, stringName=Edward W. Woolery, firstName=Edward W., middleName=null, lastName=Woolery, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506-0053, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166067271283171513, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159838350351852033, authorId=1166067271094427830, language=CN, stringName=Edward W. Woolery, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506-0053, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Edward W. Woolery

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Robotics—Article
    A High-Precision US-Guided Robot-Assisted HIFU Treatment System for Breast Cancer
    [Author(id=1166066097070989808, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066097209401842, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066097070989808, language=EN, stringName=Tianhan Tang, firstName=Tianhan, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066097310065140, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066097070989808, language=CN, stringName=Tianhan Tang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066097414922742, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066097565917688, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066097414922742, language=EN, stringName=Takashi Azuma), firstName=Takashi, middleName=null, lastName=Azuma), prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066097670775289, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066097414922742, language=CN, stringName=Takashi Azuma, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066097775632891, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066097914044925, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066097775632891, language=EN, stringName=Toshihide Iwahashi, firstName=Toshihide, middleName=null, lastName=Iwahashi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066098014708223, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066097775632891, language=CN, stringName=Toshihide Iwahashi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066098119565825, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066098257977859, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066098119565825, language=EN, stringName=Hideki Takeuchi, firstName=Hideki, middleName=null, lastName=Takeuchi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066098358641156, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066098119565825, language=CN, stringName=Hideki Takeuchi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066098467693063, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066098601910793, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066098467693063, language=EN, stringName=Etsuko Kobayashi, firstName=Etsuko, middleName=null, lastName=Kobayashi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066098706768394, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066098467693063, language=CN, stringName=Etsuko Kobayashi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066098815820300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066098950038030, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066098815820300, language=EN, stringName=Ichiro Sakuma, firstName=Ichiro, middleName=null, lastName=Sakuma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066099054895631, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837594211115752, authorId=1166066098815820300, language=CN, stringName=Ichiro Sakuma, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Tianhan Tang , Takashi Azuma) , Toshihide Iwahashi , Hideki Takeuchi , Etsuko Kobayashi , Ichiro Sakuma

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Resarch Green Industrial Processes—Article
    Intensification of Ethylene Production from Naphtha via a Redox Oxy-Cracking Scheme: Process Simulations and Analysis
    [Author(id=1166066409752158605, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066409882182031, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, authorId=1166066409752158605, language=EN, stringName=Vasudev Pralhad Haribal, firstName=Vasudev Pralhad, middleName=null, lastName=Haribal, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066409978651024, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, authorId=1166066409752158605, language=CN, stringName=Vasudev Pralhad Haribal, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066410075120018, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066410234503573, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, authorId=1166066410075120018, language=EN, stringName=Yun Chen, firstName=Yun, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
    b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066410326778262, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, authorId=1166066410075120018, language=CN, stringName=Yun Chen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
    b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066410423247256, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066410544882074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, authorId=1166066410423247256, language=EN, stringName=Luke Neal, firstName=Luke, middleName=null, lastName=Neal, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066410637156763, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, authorId=1166066410423247256, language=CN, stringName=Luke Neal, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066410733625757, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066410855260575, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, authorId=1166066410733625757, language=EN, stringName=Fanxing Li, firstName=Fanxing, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066410951729568, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837847744209159, authorId=1166066410733625757, language=CN, stringName=Fanxing Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Vasudev Pralhad Haribal , Yun Chen , Luke Neal , Fanxing Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Intelligent Manufacturing—Perspective
    The Future of Manufacturing: A New Perspective
    [Author(id=1166066332597936230, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837798956064891, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066332795068522, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837798956064891, authorId=1166066332597936230, language=EN, stringName=Ben Wang, firstName=Ben, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA
    b School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    c School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066332891537515, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837798956064891, authorId=1166066332597936230, language=CN, stringName=Ben Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA
    b School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    c School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Ben Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Additive Manufacturing—Review
    A Review of 3D Printing Technology for Medical Applications
    [Author(id=1166066478849123301, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066478983341031, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066478849123301, language=EN, stringName=Qian Yan, firstName=Qian, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066479092392936, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066478849123301, language=CN, stringName=严倩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066479197250538, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066479335662572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066479197250538, language=EN, stringName=Hanhua Dong, firstName=Hanhua, middleName=null, lastName=Dong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066479440520173, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066479197250538, language=CN, stringName=董汉华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066479545377775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066479679595505, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066479545377775, language=EN, stringName=Jin Su, firstName=Jin, middleName=null, lastName=Su, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066479788647410, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066479545377775, language=CN, stringName=苏瑾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066479889310708, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066480027722742, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066479889310708, language=EN, stringName=Jianhua Han, firstName=Jianhua, middleName=null, lastName=Han, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Clinical Science, University of Bergen, Bergen 5020, Norway, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066480132580343, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066479889310708, language=CN, stringName=韩建华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Clinical Science, University of Bergen, Bergen 5020, Norway, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066480237437945, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066480371655675, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066480237437945, language=EN, stringName=Bo Song, firstName=Bo, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066480480707580, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066480237437945, language=CN, stringName=宋波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066480581370878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066480719782912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066480581370878, language=EN, stringName=Qingsong Wei, firstName=Qingsong, middleName=null, lastName=Wei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066480824639488, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066480581370878, language=CN, stringName=魏青松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166066480925302786, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166066481063714820, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066480925302786, language=EN, stringName=Yusheng Shi, firstName=Yusheng, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166066481168572421, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837887032254887, authorId=1166066480925302786, language=CN, stringName=史玉升, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Qian Yan , Hanhua Dong , Jin Su , Jianhua Han , Bo Song , Qingsong Wei , Yusheng Shi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.