2019-12-31 , Volume 5 Issue 6

Cover illustration

  •  

    Traditionally, advanced materials are found empirically or through experimental trial-and-error approaches. As big data created by modern experimental and computational techniques is becoming more readily available, data-driven or machine learning methods have opened new paradigms for the discovery and rational design of materials. In this issue, Zhou and his colleagues introduced various machine learning methods and related software or tools. Main ideas and basic procedures for employing these approaches in materials research were highlighted. Recent representative applications of machine learning for functional material design were discussed.

    Download cover

  • Select all
    Editorial
  • RESEARCH ARTICLE
    Smart Process Manufacturing Systems: Deep Integration of Artificial Intelligence and Process Manufacturing
    [Author(id=1166142432086778502, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965765417885885, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142432208413321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965765417885885, authorId=1166142432086778502, language=EN, stringName=Feng Qian, firstName=Feng, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142432304882315, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965765417885885, authorId=1166142432086778502, language=CN, stringName=钱锋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Feng Qian

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • RESEARCH ARTICLE
    Mitigating Climate Change Will Depend on Negative Emissions Technologies
    [Author(id=1166142440609604305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965772124577988, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142440764793555, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965772124577988, authorId=1166142440609604305, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142440873845460, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965772124577988, authorId=1166142440609604305, language=CN, stringName=Chris Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    What if the Global Positioning System Didn’t Work?
    [Author(id=1166142152054072308, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965766256746686, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142152171512823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965766256746686, authorId=1166142152054072308, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Write, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142152263787513, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965766256746686, authorId=1166142152054072308, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Write, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Engineering Stars at Google Science Fair
    [Author(id=1166142161851965460, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965215959867649, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142161973600278, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965215959867649, authorId=1166142161851965460, language=EN, stringName=Sean O’Neill, firstName=Sean, middleName=null, lastName=O’Neill, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142162074263575, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965215959867649, authorId=1166142161851965460, language=CN, stringName=Sean O’Neill, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sean O’Neill

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Smog Casts a Shadow on Solar Power
    [Author(id=1166142433512841877, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965765417885886, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142433642865303, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965765417885886, authorId=1166142433512841877, language=EN, stringName=Jane Palmer, firstName=Jane, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142433735139992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965765417885886, authorId=1166142433512841877, language=CN, stringName=Jane Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jane Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Charger Collaborations Power Global Electric Vehicle Expansion
    [Author(id=1166142435337364135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965767133356223, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142435467387562, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965767133356223, authorId=1166142435337364135, language=EN, stringName=Peter Weiss, firstName=Peter, middleName=null, lastName=Weiss, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142435572245163, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965767133356223, authorId=1166142435337364135, language=CN, stringName=Peter Weiss, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peter Weiss

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • RESEARCH ARTICLE
    Recent Advances in Smart Process Manufacturing
    [Author(id=1166142491956274069, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965737941000368, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142492111463320, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965737941000368, authorId=1166142491956274069, language=EN, stringName=R.N. Lumley, firstName=R.N., middleName=null, lastName=Lumley, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Senior Technical Specialist, A.W. Bell Pty. Ltd., Dandenong South, VIC 3175, Australia
    b Adjunct Professor, La Trobe University, Melbourne, VIC 3086, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142492207932313, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965737941000368, authorId=1166142491956274069, language=CN, stringName=R.N. Lumley, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Senior Technical Specialist, A.W. Bell Pty. Ltd., Dandenong South, VIC 3175, Australia
    b Adjunct Professor, La Trobe University, Melbourne, VIC 3086, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    R.N. Lumley

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • RESEARCH ARTICLE
    Opportunities and Challenges of Artificial Intelligence for Green Manufacturing in the Process Industry
    [Author(id=1166142202134061194, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142202285056140, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, authorId=1166142202134061194, language=EN, stringName=Shuai Mao, firstName=Shuai, middleName=null, lastName=Mao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142202398302349, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, authorId=1166142202134061194, language=CN, stringName=毛帅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142202528325775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142202679320721, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, authorId=1166142202528325775, language=EN, stringName=Bing Wang, firstName=Bing, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142202796761234, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, authorId=1166142202528325775, language=CN, stringName=王冰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142202910007444, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142203061002390, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, authorId=1166142202910007444, language=EN, stringName=Yang Tang, firstName=Yang, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142203191025815, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, authorId=1166142202910007444, language=CN, stringName=唐漾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142203304272025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142203455266971, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, authorId=1166142203304272025, language=EN, stringName=Feng Qian, firstName=Feng, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142203572707484, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965281881743704, authorId=1166142203304272025, language=CN, stringName=钱锋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shuai Mao , Bing Wang , Yang Tang , Feng Qian

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Smart Process Manufacturing for Formulated Products
    [Author(id=1166142459479778108, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965799861510386, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142459626578750, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965799861510386, authorId=1166142459479778108, language=EN, stringName=James Litster, firstName=James, middleName=null, lastName=Litster, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142459739824959, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965799861510386, authorId=1166142459479778108, language=CN, stringName=James Litster, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142459848876865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965799861510386, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142459995677507, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965799861510386, authorId=1166142459848876865, language=EN, stringName=Ian David L. Bogle, firstName=Ian, middleName=null, lastName=David L. Bogle, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 6BT, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142460104729412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965799861510386, authorId=1166142459848876865, language=CN, stringName=Ian David L. Bogle, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 6BT, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] James Litster , Ian David L. Bogle

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era
    [Author(id=1166142518359416864, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965760913203388, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142518481051682, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965760913203388, authorId=1166142518359416864, language=EN, stringName=Chao Shang, firstName=Chao, middleName=null, lastName=Shang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142518581714979, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965760913203388, authorId=1166142518359416864, language=CN, stringName=尚超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Automation, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142518673989669, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965760913203388, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142518804013095, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965760913203388, authorId=1166142518673989669, language=EN, stringName=Fengqi You, firstName=Fengqi, middleName=null, lastName=You, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142518896287784, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159965760913203388, authorId=1166142518673989669, language=CN, stringName=Fengqi You, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chao Shang , Fengqi You

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Big Data Creates New Opportunities for Materials Research: A Review on Methods and Applications of Machine Learning for Materials Design
    [Author(id=1166141016161051106, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141016341406181, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, authorId=1166141016161051106, language=EN, stringName=Teng Zhou, firstName=Teng, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany
    b Process Systems Engineering, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141016446263782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, authorId=1166141016161051106, language=CN, stringName=周腾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany
    b Process Systems Engineering, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141016551121384, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141016697922026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, authorId=1166141016551121384, language=EN, stringName=Zhen Song, firstName=Zhen, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141016802779627, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, authorId=1166141016551121384, language=CN, stringName=Zhen Song, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141016907637229, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141017087992304, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, authorId=1166141016907637229, language=EN, stringName=Kai Sundmacher, firstName=Kai, middleName=null, lastName=Sundmacher, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany
    b Process Systems Engineering, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141017197044209, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953005124575289, authorId=1166141016907637229, language=CN, stringName=Kai Sundmacher, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg 39106, Germany
    b Process Systems Engineering, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Teng Zhou , Zhen Song , Kai Sundmacher

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Artificial Intelligence in Steam Cracking Modeling: A Deep Learning Algorithm for Detailed Effluent Prediction
    [Author(id=1166141802244924202, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141802412696364, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141802244924202, language=EN, stringName=Pieter P. Plehiers, firstName=Pieter, middleName=null, lastName=P. Plehiers, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141802521748269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141802244924202, language=CN, stringName=Pieter P. Plehiers, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141802634994479, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141802781795121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141802634994479, language=EN, stringName=Steffen H. Symoens, firstName=Steffen, middleName=null, lastName=H. Symoens, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141802886652722, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141802634994479, language=CN, stringName=Steffen H. Symoens, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141802995704628, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141803146699574, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141802995704628, language=EN, stringName=Ismaël Amghizar, firstName=Ismaël, middleName=null, lastName=Amghizar, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141803255751479, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141802995704628, language=CN, stringName=Ismaël Amghizar, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141803364803385, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141803511604027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141803364803385, language=EN, stringName=Guy B. Marin, firstName=Guy, middleName=null, lastName=B. Marin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141803629044540, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141803364803385, language=CN, stringName=Guy B. Marin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141803738096446, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141803884897088, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141803738096446, language=EN, stringName=Christian V. Stevens, firstName=Christian, middleName=null, lastName=V. Stevens, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent 9000,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141803998143297, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141803738096446, language=CN, stringName=Christian V. Stevens, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent 9000,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141804107195203, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141804283355973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141804107195203, language=EN, stringName=Kevin M. Van Geem, firstName=Kevin, middleName=null, lastName=M. Van Geem, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141804400796486, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964578421466066, authorId=1166141804107195203, language=CN, stringName=Kevin M. Van Geem, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Pieter P. Plehiers , Steffen H. Symoens , Ismaël Amghizar , Guy B. Marin , Christian V. Stevens , Kevin M. Van Geem

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    A Knowledge Base System for Operation Optimization: Design and Implementation Practice for the Polyethylene Process
    [Author(id=1166142798597644640, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142798723473762, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142798597644640, language=EN, stringName=Weimin Zhong, firstName=Weimin, middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142798815748451, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142798597644640, language=CN, stringName=钟伟民, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142798916411749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142799038046567, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142798916411749, language=EN, stringName=Chaoyuan Li, firstName=Chaoyuan, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142799134515560, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142798916411749, language=CN, stringName=李超远, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142799230984554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142799356813676, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142799230984554, language=EN, stringName=Xin Peng, firstName=Xin, middleName=null, lastName=Peng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142799457476973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142799230984554, language=CN, stringName=彭鑫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142799553945967, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142799679775089, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142799553945967, language=EN, stringName=Feng Wan, firstName=Feng, middleName=null, lastName=Wan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142799776244082, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142799553945967, language=CN, stringName=万锋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142799868518772, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142799998542198, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142799868518772, language=EN, stringName=Xufeng An, firstName=Xufeng, middleName=null, lastName=An, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142800099205495, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142799868518772, language=CN, stringName=安许峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166142800191480185, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166142800321503611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142800191480185, language=EN, stringName=Zhou Tian, firstName=Zhou, middleName=null, lastName=Tian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166142800413778300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159966064928940778, authorId=1166142800191480185, language=CN, stringName=田洲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Weimin Zhong , Chaoyuan Li , Xin Peng , Feng Wan , Xufeng An , Zhou Tian

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    A Multi-Objective Optimal Experimental Design Framework for Enhancing the Efficiency of Online Model Identification Platforms
    [Author(id=1166143605237801520, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143605363630642, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143605237801520, language=EN, stringName=Arun Pankajakshan, firstName=Arun, middleName=null, lastName=Pankajakshan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143605460099635, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143605237801520, language=CN, stringName=Arun Pankajakshan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166143605556568629, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143605678203447, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143605556568629, language=EN, stringName=Conor Waldron, firstName=Conor, middleName=null, lastName=Waldron, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143605778866744, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143605556568629, language=CN, stringName=Conor Waldron, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166143605871141434, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143605996970556, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143605871141434, language=EN, stringName=Marco Quaglio, firstName=Marco, middleName=null, lastName=Quaglio, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143606097633853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143605871141434, language=CN, stringName=Marco Quaglio, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166143606189908543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143606319931969, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143606189908543, language=EN, stringName=Asterios Gavriilidis, firstName=Asterios, middleName=null, lastName=Gavriilidis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143606412206658, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143606189908543, language=CN, stringName=Asterios Gavriilidis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166143606512869956, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143606638699078, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143606512869956, language=EN, stringName=Federico Galvanin, firstName=Federico, middleName=null, lastName=Galvanin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143606730973767, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968852459184475, authorId=1166143606512869956, language=CN, stringName=Federico Galvanin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Arun Pankajakshan , Conor Waldron , Marco Quaglio , Asterios Gavriilidis , Federico Galvanin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount of Aluminum Fluoride Addition Based on Augmented Fuzzy Cognitive Maps
    [Author(id=1166143481036071853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143481161900975, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143481036071853, language=EN, stringName=Weichao Yue, firstName=Weichao, middleName=null, lastName=Yue, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143481258369968, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143481036071853, language=CN, stringName=岳伟超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166143481359033266, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143481484862388, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143481359033266, language=EN, stringName=Weihua Gui, firstName=Weihua, middleName=null, lastName=Gui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143481577137077, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143481359033266, language=CN, stringName=桂卫华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166143481673606071, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143481799435193, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143481673606071, language=EN, stringName=Xiaofang Chen, firstName=Xiaofang, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143481895904186, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143481673606071, language=CN, stringName=陈晓方, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166143481992373180, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143482118202302, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143481992373180, language=EN, stringName=Zhaohui Zeng, firstName=Zhaohui, middleName=null, lastName=Zeng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143482218865599, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143481992373180, language=CN, stringName=曾朝晖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166143482311140289, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166143482436969411, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143482311140289, language=EN, stringName=Yongfang Xie, firstName=Yongfang, middleName=null, lastName=Xie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166143482541827012, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968694304563540, authorId=1166143482311140289, language=CN, stringName=谢永芳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Information Science and Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Weichao Yue , Weihua Gui , Xiaofang Chen , Zhaohui Zeng , Yongfang Xie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Optimal Antibody Purification Strategies Using Data-Driven Models
    [Author(id=1166144798412431912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968927948267873, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166144798534066731, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968927948267873, authorId=1166144798412431912, language=EN, stringName=Songsong Liu, firstName=Songsong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Management, Harbin Institute of Technology, Harbin 150001, China
    b School of Management, Swansea University, Swansea SA1 8EN, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166144798609564204, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968927948267873, authorId=1166144798412431912, language=CN, stringName=刘松崧, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Management, Harbin Institute of Technology, Harbin 150001, China
    b School of Management, Swansea University, Swansea SA1 8EN, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166144798689255982, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968927948267873, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166144798781530672, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968927948267873, authorId=1166144798689255982, language=EN, stringName=Lazaros G. Papageorgiou, firstName=Lazaros G., middleName=null, lastName=Papageorgiou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166144798857028145, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159968927948267873, authorId=1166144798689255982, language=CN, stringName=Lazaros G. Papageorgiou, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Songsong Liu , Lazaros G. Papageorgiou

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Research and Implementations of Structural Monitoring for Bridges and Buildings in Japan—A Review
    [Author(id=1166141374488830084, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141374614659206, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141374488830084, language=EN, stringName=Yozo Fujino, firstName=Yozo, middleName=null, lastName=Fujino, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Advanced Sciences, Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141374706933895, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141374488830084, language=CN, stringName=Yozo Fujino, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Advanced Sciences, Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141374807597193, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141374929232011, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141374807597193, language=EN, stringName=Dionysius M. Siringoringo, firstName=Dionysius, middleName=null, lastName=M. Siringoringo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Advanced Sciences, Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141375021506700, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141374807597193, language=CN, stringName=Dionysius M. Siringoringo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Advanced Sciences, Yokohama National University, Yokohama 240-8501, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141375122169998, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141375243804816, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141375122169998, language=EN, stringName=Yoshiki Ikeda, firstName=Yoshiki, middleName=null, lastName=Ikeda, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Disaster Prevention Research Institute, Kyoto University, Kyoto 611-0011, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141375340273809, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141375122169998, language=CN, stringName=Yoshiki Ikeda, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Disaster Prevention Research Institute, Kyoto University, Kyoto 611-0011, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141375436742803, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141375558377621, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141375436742803, language=EN, stringName=Tomonori Nagayama, firstName=Tomonori, middleName=null, lastName=Nagayama, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141375654846614, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141375436742803, language=CN, stringName=Tomonori Nagayama, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141375747121304, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141375877144730, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141375747121304, language=EN, stringName=Tsukasa Mizutani, firstName=Tsukasa, middleName=null, lastName=Mizutani, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141375973613723, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955117757752188, authorId=1166141375747121304, language=CN, stringName=Tsukasa Mizutani, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yozo Fujino , Dionysius M. Siringoringo , Yoshiki Ikeda , Tomonori Nagayama , Tsukasa Mizutani

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Thoughts on the Development of Bridge Technology in China
    [Author(id=1166141546899890444, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964231170842646, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141547021525263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964231170842646, authorId=1166141546899890444, language=EN, stringName=Xuhong Zhou, firstName=Xuhong, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Civil Engineering, Chongqing University, Chongqing 400044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141547117994257, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964231170842646, authorId=1166141546899890444, language=CN, stringName=周绪红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Civil Engineering, Chongqing University, Chongqing 400044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141547210268948, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964231170842646, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141547365458199, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964231170842646, authorId=1166141547210268948, language=EN, stringName=Xigang Zhang, firstName=Xigang, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b China Communications Construction Group Co., Ltd., Beijing 100088, China
    c CCCC Highway Bridges National Engineering Research Centre CO., Ltd., Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141547461927193, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964231170842646, authorId=1166141547210268948, language=CN, stringName=张喜刚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b China Communications Construction Group Co., Ltd., Beijing 100088, China
    c CCCC Highway Bridges National Engineering Research Centre CO., Ltd., Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xuhong Zhou , Xigang Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Material Mechanical Properties Necessary for the Structural Intervention of Concrete Structures
    [Author(id=1166141249506960160, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954598125429081, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141249683120931, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954598125429081, authorId=1166141249506960160, language=EN, stringName=Tamon Ueda, firstName=Tamon, middleName=null, lastName=Ueda, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
    b College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141249800561444, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954598125429081, authorId=1166141249506960160, language=CN, stringName=Tamon Ueda, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
    b College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Tamon Ueda

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Multiscale Homogenization Analysis of Alkali–Silica Reaction (ASR) Effect in Concrete
    [Author(id=1166138192547209263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138192673038385, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, authorId=1166138192547209263, language=EN, stringName=Roozbeh Rezakhani, firstName=Roozbeh, middleName=null, lastName=Rezakhani, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138192765313074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, authorId=1166138192547209263, language=CN, stringName=Roozbeh Rezakhani, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138192865976372, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138192987611190, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, authorId=1166138192865976372, language=EN, stringName=Mohammed Alnaggar, firstName=Mohammed, middleName=null, lastName=Alnaggar, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138193084080183, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, authorId=1166138192865976372, language=CN, stringName=Mohammed Alnaggar, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138193180549177, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138193302183995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, authorId=1166138193180549177, language=EN, stringName=Gianluca Cusatis, firstName=Gianluca, middleName=null, lastName=Cusatis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138193402847292, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159961689909158200, authorId=1166138193180549177, language=CN, stringName=Gianluca Cusatis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Roozbeh Rezakhani , Mohammed Alnaggar , Gianluca Cusatis

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Information Science Should Take a Lead in Future Biomedical Research
    [Author(id=1166140955427528990, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964126325826447, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166140955557552416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964126325826447, authorId=1166140955427528990, language=EN, stringName=Kenta Nakai, firstName=Kenta, middleName=null, lastName=Nakai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166140955649827105, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159964126325826447, authorId=1166140955427528990, language=CN, stringName=Kenta Nakai, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Kenta Nakai

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Preliminary Investigation of the Reversible 4D Printing of a Dual-Layer Component
    [Author(id=1166141424476545599, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141424635929153, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, authorId=1166141424476545599, language=EN, stringName=Amelia Yilin Lee, firstName=Amelia, middleName=null, lastName=Yilin Lee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141424732398146, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, authorId=1166141424476545599, language=CN, stringName=Amelia Yilin Lee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141424820478532, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141424946307654, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, authorId=1166141424820478532, language=EN, stringName=Jia An, firstName=Jia, middleName=null, lastName=An, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141425038582343, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, authorId=1166141424820478532, language=CN, stringName=Jia An, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141425135051337, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141425290240588, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, authorId=1166141425135051337, language=EN, stringName=Chee Kai Chu, firstName=Chee, middleName=null, lastName=Kai Chu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
    b Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141425382515277, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, authorId=1166141425135051337, language=CN, stringName=Chee Kai Chu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
    b Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166141425478984271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166141425604813393, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, authorId=1166141425478984271, language=EN, stringName=Yi Zhang, firstName=Yi, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166141425697088082, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159955485635961077, authorId=1166141425478984271, language=CN, stringName=Yi Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Amelia Yilin Lee , Jia An , Chee Kai Chu , Yi Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Explicit–Implicit Co-Simulation Techniques for Dynamic Responses of a Passenger Car on Arbitrary Road Surfaces
    [Author(id=1166139146264830279, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953893868233405, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166139146394853705, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953893868233405, authorId=1166139146264830279, language=EN, stringName=Hongzhou Hu, firstName=Hongzhou, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166139146487128394, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953893868233405, authorId=1166139146264830279, language=CN, stringName=胡红舟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166139146583597388, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953893868233405, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166139146709426510, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953893868233405, authorId=1166139146583597388, language=EN, stringName=Zhihua Zhong, firstName=Zhihua, middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166139146801701199, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953893868233405, authorId=1166139146583597388, language=CN, stringName=钟志华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hongzhou Hu , Zhihua Zhong

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Privacy Computing: Concept, Computing Framework, and Future Development Trends
    [Author(id=1166140891355340938, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166140891510530189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, authorId=1166140891355340938, language=EN, stringName=Fenghua Li, firstName=Fenghua, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
    b School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166140891602804878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, authorId=1166140891355340938, language=CN, stringName=李凤华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
    b School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166140891699273872, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166140891820908690, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, authorId=1166140891699273872, language=EN, stringName=Hui Li, firstName=Hui, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c State Key Laboratory of Integrated Services Networks, School of Cyber Engineering, Xidian University, Xi'an 710071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166140891917377683, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, authorId=1166140891699273872, language=CN, stringName=李晖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c State Key Laboratory of Integrated Services Networks, School of Cyber Engineering, Xidian University, Xi'an 710071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166140892009652373, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166140892131287191, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, authorId=1166140892009652373, language=EN, stringName=Ben Niu, firstName=Ben, middleName=null, lastName=Niu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166140892227756184, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, authorId=1166140892009652373, language=CN, stringName=牛犇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166140892320030874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166140892450054300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, authorId=1166140892320030874, language=EN, stringName=Jinjun Chen, firstName=Jinjun, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Computer Science and Software Engineering, Swinburne University of Technology, Victoria 3122, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166140892542328989, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159962247718035777, authorId=1166140892320030874, language=CN, stringName=陈金俊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Computer Science and Software Engineering, Swinburne University of Technology, Victoria 3122, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Fenghua Li , Hui Li , Ben Niu , Jinjun Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.