2020-12-28 , Volume 6 Issue 12

Cover illustration

  •  

    The electric power industry has supported the rapid development of China's economy and society, with coal-fired power playing an irreplaceable role. As the problems of energy security, the ecological environment degradation, and climate change become increasingly prominent, clean fossil energy and large-scale renewable energy have been a significant trend in energy development. In recent years, great progress has been made in near-zero and ultra-low emission technologies for clean coal-fired power in order to advance the construction of an ecological civilization. Solutions have been found to the air pollution problems caused by coal-fired power, promoting high-quality, green, and sustainable energy development. On the future road to carbon neutrality, solutions for clean coal-fired power that feature affordability for the public, cleanliness of utilization, and guaranteed supply will be continually developed. In this way, we can contribute to the global elimination of energy poverty, while advancing the health, well-being, and quality of life of all people.

    Download cover

  • Select all
    Editorial
  • Dedication to Clean Power and Promotion of the Energy Revolution
    [Author(id=1166134844582453823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946782425800883, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134844716671553, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946782425800883, authorId=1166134844582453823, language=EN, stringName=Dazhao Gu, firstName=Dazhao, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Energy Investment Corporation Limited, Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134844817334850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946782425800883, authorId=1166134844582453823, language=CN, stringName=顾大钊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Energy Investment Corporation Limited, Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Dazhao Gu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • Hydrogen Power Focus Shifts from Cars to Heavy Vehicles
    [Author(id=1166134641225818687, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845331972300, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134641385202241, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845331972300, authorId=1166134641225818687, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134641498448450, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845331972300, authorId=1166134641225818687, language=CN, stringName=Chris Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Three New Missions Head for Mars
    [Author(id=1166134797941793261, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844111429832, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134798055039471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844111429832, authorId=1166134797941793261, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134798138925552, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844111429832, authorId=1166134797941793261, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Accuracy Eludes Competitors in Facebook Deepfake Detection Challenge
    [Author(id=1166134772100686150, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946746371563696, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134772234903880, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946746371563696, authorId=1166134772100686150, language=EN, stringName=Ramin Skibba, firstName=Ramin, middleName=null, lastName=Skibba, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134772331372873, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946746371563696, authorId=1166134772100686150, language=CN, stringName=Ramin Skibba, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ramin Skibba

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Getting to Net-Zero Emissions
    [Author(id=1166134770024505659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946731662139567, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134770175500605, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946731662139567, authorId=1166134770024505659, language=EN, stringName=Chris Greig, firstName=Chris, middleName=null, lastName=Greig, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Gerhard R. Andlinger Visiting Fellow in Energy and the Environment, Princeton University, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134770284552511, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946731662139567, authorId=1166134770024505659, language=CN, stringName=Chris Greig, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Gerhard R. Andlinger Visiting Fellow in Energy and the Environment, Princeton University, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Greig

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Thoughts on the Prospects of Renewable Hydrogen
    [Author(id=1166134795681063372, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946846623817935, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134795865612755, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946846623817935, authorId=1166134795681063372, language=EN, stringName=Michael J. Brear, firstName=Michael J., middleName=null, lastName=Brear, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Melbourne Energy Institute, University of Melbourne, Parkville, VIC 3010, Australia
    b Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134795974664661, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946846623817935, authorId=1166134795681063372, language=CN, stringName=Michael J. Brear, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Melbourne Energy Institute, University of Melbourne, Parkville, VIC 3010, Australia
    b Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Michael J. Brear

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Towards a Large-Scale Hydrogen Industry for Australia
    [Author(id=1166134795530068425, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844526665929, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134795639120331, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844526665929, authorId=1166134795530068425, language=EN, stringName=Patrick G. Hartley, firstName=Patrick G., middleName=null, lastName=Hartley, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CSIRO Energy, Clayton South, VIC 3169, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134795718812110, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844526665929, authorId=1166134795530068425, language=CN, stringName=Patrick G. Hartley, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CSIRO Energy, Clayton South, VIC 3169, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134795802698193, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844526665929, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134795903361492, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844526665929, authorId=1166134795802698193, language=EN, stringName=Vicky Au, firstName=Vicky, middleName=null, lastName=Au, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CSIRO Energy, Clayton South, VIC 3169, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134795987247574, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946844526665929, authorId=1166134795802698193, language=CN, stringName=Vicky Au, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CSIRO Energy, Clayton South, VIC 3169, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Patrick G. Hartley , Vicky Au

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Clean Power Technology
    [Author(id=1166134849657561681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845763985614, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134849808556627, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845763985614, authorId=1166134849657561681, language=EN, stringName=Robin J. Batterham, firstName=Robin J., middleName=null, lastName=Batterham, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Kernot Professor of Engineering, University of Melbourne, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134849917608532, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845763985614, authorId=1166134849657561681, language=CN, stringName=Robin J. Batterham, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Kernot Professor of Engineering, University of Melbourne, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Robin J. Batterham

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Review
    Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches
    [Author(id=1166133918647902458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166133918752760060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, authorId=1166133918647902458, language=EN, stringName=Wei Liu, firstName=Wei, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a School of Chemical and Biomolecular Engineering & Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332-0620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133918836646141, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, authorId=1166133918647902458, language=CN, stringName=刘伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a School of Chemical and Biomolecular Engineering & Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332-0620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133918920532223, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166133919025389825, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, authorId=1166133918920532223, language=EN, stringName=Congmin Liu, firstName=Congmin, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133919105081602, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, authorId=1166133918920532223, language=CN, stringName=刘聪敏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133919184773380, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133919289630982, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, authorId=1166133919184773380, language=EN, stringName=Parikshit Gogoi, firstName=Parikshit, middleName=null, lastName=Gogoi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Chemistry, Nowgong College, Nagaon 782001, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133919373517063, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, authorId=1166133919184773380, language=CN, stringName=Parikshit Gogoi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Chemistry, Nowgong College, Nagaon 782001, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133919453208841, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133919566455051, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, authorId=1166133919453208841, language=EN, stringName=Yulin Deng, firstName=Yulin, middleName=null, lastName=Deng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical and Biomolecular Engineering & Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332-0620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133919641952524, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943502081614434, authorId=1166133919453208841, language=CN, stringName=邓渝林, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical and Biomolecular Engineering & Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332-0620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wei Liu , Congmin Liu , Parikshit Gogoi , Yulin Deng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap
    [Author(id=1166134335767241166, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134335926624720, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134335767241166, language=EN, stringName=Guoping Hu, firstName=Guoping, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134336048259537, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134335767241166, language=CN, stringName=胡国平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134336165700051, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134336325083605, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134336165700051, language=EN, stringName=Chao Chen, firstName=Chao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134336442524118, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134336165700051, language=CN, stringName=陈超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134336564158936, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134336723542490, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134336564158936, language=EN, stringName=Hiep Thuan Lu, firstName=Hiep, middleName=null, lastName=Thuan Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134336840983003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134336564158936, language=CN, stringName=卢合顺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134336954229213, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134337117807071, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134336954229213, language=EN, stringName=Yue Wu, firstName=Yue, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134337235247584, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134336954229213, language=CN, stringName=吴越, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134337352688098, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134337512071652, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134337352688098, language=EN, stringName=Congmin Liu, firstName=Congmin, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134337629512165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134337352688098, language=CN, stringName=刘聪敏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134337751146983, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134337906336233, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134337751146983, language=EN, stringName=Lefu Tao, firstName=Lefu, middleName=null, lastName=Tao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134338027971050, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134337751146983, language=CN, stringName=陶乐夫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134338149605868, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134338304795118, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134338149605868, language=EN, stringName=Yuhan Men, firstName=Yuhan, middleName=null, lastName=Men, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134338422235631, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134338149605868, language=CN, stringName=门昱含, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134338543870449, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134338699059699, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134338543870449, language=EN, stringName=Guangli He, firstName=Guangli, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134338850054644, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134338543870449, language=CN, stringName=何广利, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134338971689462, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134339126878712, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134338971689462, language=EN, stringName=Kevin Gang Li, firstName=Kevin, middleName=null, lastName=Gang Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134339244319225, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944092656394563, authorId=1166134338971689462, language=CN, stringName=李刚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Chemical Engineering, the University of Melbourne, Parkville, 3010, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Guoping Hu , Chao Chen , Hiep Thuan Lu , Yue Wu , Congmin Liu , Lefu Tao , Yuhan Men , Guangli He , Kevin Gang Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Preparation of Nanoporous Carbonaceous Promoters for Enhanced CO2 Absorption in Tertiary Amines
    [Author(id=1166135042457133248, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135042570379457, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135042457133248, language=EN, stringName=Masood S. Alivand, firstName=Masood, middleName=null, lastName=S. Alivand, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135042687819970, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135042457133248, language=CN, stringName=Masood S. Alivand, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135042805260484, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135042918506693, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135042805260484, language=EN, stringName=Omid Mazaheri, firstName=Omid, middleName=null, lastName=Mazaheri, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135043027558598, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135042805260484, language=CN, stringName=Omid Mazaheri, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135043149193416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135043258245321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135043149193416, language=EN, stringName=Yue Wu, firstName=Yue, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135043371491530, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135043149193416, language=CN, stringName=Yue Wu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135043488932044, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135043597983949, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135043488932044, language=EN, stringName=Geoffrey W. Stevens, firstName=Geoffrey, middleName=null, lastName=W. Stevens, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135043711230158, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135043488932044, language=CN, stringName=Geoffrey W. Stevens, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135043828670672, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135043941916881, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135043828670672, language=EN, stringName=Colin A. Scholes, firstName=Colin, middleName=null, lastName=A. Scholes, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135044063551698, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135043828670672, language=CN, stringName=Colin A. Scholes, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135044176797908, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135044290044117, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135044176797908, language=EN, stringName=Kathryn A. Mumford, firstName=Kathryn, middleName=null, lastName=A. Mumford, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135044403290326, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947920327893772, authorId=1166135044176797908, language=CN, stringName=Kathryn A. Mumford, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Masood S. Alivand , Omid Mazaheri , Yue Wu , Geoffrey W. Stevens , Colin A. Scholes , Kathryn A. Mumford

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Deciphering the Origins of P1-Induced Power Losses in Cu(Inx,Ga1–x)Se2 (CIGS) Modules Through Hyperspectral Luminescence
    [Author(id=1166134906326803162, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134906477798108, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134906326803162, language=EN, stringName=César Omar Ramírez Quiroz, firstName=César, middleName=null, lastName=Omar Ramírez Quiroz, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134906586850013, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134906326803162, language=CN, stringName=César Omar Ramírez Quiroz, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134906700096223, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134906851091169, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134906700096223, language=EN, stringName=Laura-Isabelle Dion-Bertrand, firstName=Laura-Isabelle, middleName=null, lastName=Dion-Bertrand, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Photon Etc. Inc., Montréal, QC H2S 2X3, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134906960143074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134906700096223, language=CN, stringName=Laura-Isabelle Dion-Bertrand, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Photon Etc. Inc., Montréal, QC H2S 2X3, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134907073389284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134907262132967, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134907073389284, language=EN, stringName=Christoph J. Brabec, firstName=Christoph, middleName=null, lastName=J. Brabec, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c Institute of Materials for Electronics and Energy Technology (i-MEET), Department for Material Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
    d Helmholtz Institute Erlangen-Nürnberg for Renewable Energy Production, Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134907375379176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134907073389284, language=CN, stringName=Christoph J. Brabec, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c Institute of Materials for Electronics and Energy Technology (i-MEET), Department for Material Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
    d Helmholtz Institute Erlangen-Nürnberg for Renewable Energy Production, Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134907484431082, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134907631231724, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134907484431082, language=EN, stringName=Joachim Müller, firstName=Joachim, middleName=null, lastName=Müller, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134907744477933, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134907484431082, language=CN, stringName=Joachim Müller, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134907857724143, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134908004524785, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134907857724143, language=EN, stringName=Kay Orgassa, firstName=Kay, middleName=null, lastName=Orgassa, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134908113576690, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947186349859197, authorId=1166134907857724143, language=CN, stringName=Kay Orgassa, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    César Omar Ramírez Quiroz , Laura-Isabelle Dion-Bertrand , Christoph J. Brabec , Joachim Müller , Kay Orgassa

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Moisture Absorption and Desorption in an Ionomer-Based Encapsulant: A Type of Self-Breathing Encapsulant for CIGS Thin-Film PV Modules
    [Author(id=1166133873521386482, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133873655604212, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, authorId=1166133873521386482, language=EN, stringName=Miao Yang, firstName=Miao, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133873756267509, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, authorId=1166133873521386482, language=CN, stringName=Miao Yang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133873856930807, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133873991148537, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, authorId=1166133873856930807, language=EN, stringName=Raymund Schäffler, firstName=Raymund, middleName=null, lastName=Schäffler, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133874121171962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, authorId=1166133873856930807, language=CN, stringName=Raymund Schäffler, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133874238612476, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133874372830206, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, authorId=1166133874238612476, language=EN, stringName=Tobias Repmann, firstName=Tobias, middleName=null, lastName=Repmann, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133874477687807, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, authorId=1166133874238612476, language=CN, stringName=Tobias Repmann, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133874578350080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133874720956418, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, authorId=1166133874578350080, language=EN, stringName=Kay Orgassa, firstName=Kay, middleName=null, lastName=Orgassa, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133874830008323, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943328814915933, authorId=1166133874578350080, language=CN, stringName=Kay Orgassa, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Miao Yang , Raymund Schäffler , Tobias Repmann , Kay Orgassa

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Near-Zero Air Pollutant Emission Technologies and Applications for Clean Coal-Fired Power
    [Author(id=1166135015408067526, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947772700975722, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135015542285260, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947772700975722, authorId=1166135015408067526, language=EN, stringName=Shumin Wang, firstName=Shumin, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Energy Investment Corporation Limited, Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135015638754256, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947772700975722, authorId=1166135015408067526, language=CN, stringName=王树民, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Energy Investment Corporation Limited, Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shumin Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era
    [Author(id=1166130300238619089, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130300402196947, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130300238619089, language=EN, stringName=Xi Lu, firstName=Xi, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130300523831764, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130300238619089, language=CN, stringName=鲁玺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130300645466582, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130300813238744, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130300645466582, language=EN, stringName=Shaojun Zhang, firstName=Shaojun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130300934873561, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130300645466582, language=CN, stringName=张少君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130301056508379, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130301220086237, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130301056508379, language=EN, stringName=Jia Xing, firstName=Jia, middleName=null, lastName=Xing, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130301341721054, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130301056508379, language=CN, stringName=邢佳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130301467550176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130301631128034, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130301467550176, language=EN, stringName=Yunjie Wang, firstName=Yunjie, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130301765345763, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130301467550176, language=CN, stringName=王韵杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130301886980581, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130302050558439, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130301886980581, language=EN, stringName=Wenhui Chen, firstName=Wenhui, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130302176387560, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130301886980581, language=CN, stringName=陈文会, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130302298022378, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130302461600236, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130302298022378, language=EN, stringName=Dian Ding, firstName=Dian, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130302583235053, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130302298022378, language=CN, stringName=丁点, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130302709064175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130302872642033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130302709064175, language=EN, stringName=Ye Wu, firstName=Ye, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130302994276850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130302709064175, language=CN, stringName=吴烨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130303115911668, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130303279489526, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130303115911668, language=EN, stringName=Shuxiao Wang, firstName=Shuxiao, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130303405318647, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130303115911668, language=CN, stringName=王书肖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130303531147769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130303698919931, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130303531147769, language=EN, stringName=Lei Duan, firstName=Lei, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130303820554748, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130303531147769, language=CN, stringName=段雷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130303950578174, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130304114156032, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130303950578174, language=EN, stringName=Jiming Hao, firstName=Jiming, middleName=null, lastName=Hao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130304235790849, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934092961702823, authorId=1166130303950578174, language=CN, stringName=郝吉明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xi Lu , Shaojun Zhang , Jia Xing , Yunjie Wang , Wenhui Chen , Dian Ding , Ye Wu , Shuxiao Wang , Lei Duan , Jiming Hao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Perspective
    Solvent-Less Vapor-Phase Fabrication of Membranes for Sustainable Separation Processes
    [Author(id=1166135209684034003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947331036570073, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135209860194776, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947331036570073, authorId=1166135209684034003, language=EN, stringName=Junjie Zhao, firstName=Junjie, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
    b Institute of Zhejiang University–Quzhou, Quzhou 324000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135209948275162, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947331036570073, authorId=1166135209684034003, language=CN, stringName=赵俊杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
    b Institute of Zhejiang University–Quzhou, Quzhou 324000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135210048938461, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947331036570073, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135210183156195, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947331036570073, authorId=1166135210048938461, language=EN, stringName=Karen K. Gleason, firstName=Karen K., middleName=null, lastName=Gleason, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135210283819492, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947331036570073, authorId=1166135210048938461, language=CN, stringName=Karen K. Gleason, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Junjie Zhao , Karen K. Gleason

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Tall Buildings with Dynamic Facade Under Winds
    [Author(id=1166133964869132851, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943847268638738, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133965003350581, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943847268638738, authorId=1166133964869132851, language=EN, stringName=Fei Ding, firstName=Fei, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NatHaz Modeling Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133965104013878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943847268638738, authorId=1166133964869132851, language=CN, stringName=丁菲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NatHaz Modeling Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133965208871480, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943847268638738, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133965343089210, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943847268638738, authorId=1166133965208871480, language=EN, stringName=Ahsan Kareem, firstName=Ahsan, middleName=null, lastName=Kareem, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NatHaz Modeling Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133965447946811, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943847268638738, authorId=1166133965208871480, language=CN, stringName=Ahsan Kareem, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= NatHaz Modeling Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Fei Ding , Ahsan Kareem

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Al-NaOH-Composited Liquid Metal: A Fast-Response Water-Triggered Material with Thermal and Pneumatic Properties
    [Author(id=1166133859973784465, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133860128973717, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, authorId=1166133859973784465, language=EN, stringName=Bo Yuan, firstName=Bo, middleName=null, lastName=Yuan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133860242219927, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, authorId=1166133859973784465, language=CN, stringName=袁博, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133860363854747, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133860519043998, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, authorId=1166133860363854747, language=EN, stringName=Xuyang Sun, firstName=Xuyang, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133860636484512, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, authorId=1166133860363854747, language=CN, stringName=孙旭阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166133860753925027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166133860946863016, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, authorId=1166133860753925027, language=EN, stringName=Jing Liu, firstName=Jing, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
    b Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166133861068497834, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159943146010370191, authorId=1166133860753925027, language=CN, stringName=刘静, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
    b Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Bo Yuan , Xuyang Sun , Jing Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Connected Vehicle Based Traffic Signal Coordination
    [Author(id=1166134458316415917, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944937825427713, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134458471605167, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944937825427713, authorId=1166134458316415917, language=EN, stringName=Wan Li, firstName=Wan, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Oak Ridge National Laboratory, Knoxville, TN, 37932, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134458584851376, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944937825427713, authorId=1166134458316415917, language=CN, stringName=李婉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Oak Ridge National Laboratory, Knoxville, TN, 37932, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166134458702291890, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944937825427713, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166134458861675444, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944937825427713, authorId=1166134458702291890, language=EN, stringName=Xuegang Ban, firstName=Xuegang, middleName=null, lastName=Ban, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b University of Washington, Seattle, WA, 98195, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166134458974921653, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159944937825427713, authorId=1166134458702291890, language=CN, stringName=班学钢, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b University of Washington, Seattle, WA, 98195, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wan Li , Xuegang Ban

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.