2020-07-31 , Volume 6 Issue 7

Cover illustration

  •  

    A new era of electricity is dawning that combines decarbonization of the grid with the extensive electrification of all sectors of society. A grid as smart as the Internet is needed to harness the full potential of renewables, accommodate technology disruptions, embrace the rise of prosumers, and seamlessly integrate nano-, mini-, and micro-grids. Inspired by the Internet’s way of deploying intelligence, a new distributed paradigm can be realized by distributing the responsibility to sub-grids (clusters) and requiring each sub-grid to maintain its net power balance. This leads to a natural hierarchical network structure, with the whole interconnected grid at the top of the hierarchy. One tier below could be a power authority or a company with its own energy management system (EMS), which would be operated as a “control area” in the interconnection. The bottom tier could be a smart home.

    Download cover

  • Select all
    Editorial
  • Editorial for the Special Issue on Smart Grid and Energy Internet
    [Author(id=1166129399318897488, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933741059596988, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129399461503826, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933741059596988, authorId=1166129399318897488, language=EN, stringName=Yixin Yu, firstName=Yixin, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129399570555731, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933741059596988, authorId=1166129399318897488, language=CN, stringName=余贻鑫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yixin Yu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • CRISPR Use in Humans Shows Promise While Experts Weigh Ethical Concerns
    [Author(id=1166125684667114122, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453473173935, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125684776166028, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453473173935, authorId=1166125684667114122, language=EN, stringName=Peter Weiss, firstName=Peter, middleName=null, lastName=Weiss, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125684860052109, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453473173935, authorId=1166125684667114122, language=CN, stringName=Peter Weiss, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peter Weiss

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Media Enhanced by Artificial Intelligence: Can We Believe Anything Anymore?
    [Author(id=1166125668154139083, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926419906159007, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125668321911245, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926419906159007, authorId=1166125668154139083, language=EN, stringName=Ramin Skibba, firstName=Ramin, middleName=null, lastName=Skibba, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125668435157454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926419906159007, authorId=1166125668154139083, language=CN, stringName=Ramin Skibba, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ramin Skibba

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • What Will 5G Bring?
    [Author(id=1166125685510169239, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453078909358, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125685656969883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453078909358, authorId=1166125685510169239, language=EN, stringName=Erika K. Carlson, firstName=Erika K., middleName=null, lastName=Carlson, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125685770216093, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453078909358, authorId=1166125685510169239, language=CN, stringName=Erika K. Carlson, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Erika K. Carlson

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Engineering in the 21st Century: The Grand Challenges and the Grand Challenges Scholars Program
    [Author(id=1166125773150151466, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926598218605098, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125773263397676, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926598218605098, authorId=1166125773150151466, language=EN, stringName=C.D. Mote Jr., firstName=C.D. Mote, middleName=null, lastName=Jr., prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Past President, US National Academy of Engineering, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125773351478061, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926598218605098, authorId=1166125773150151466, language=CN, stringName=C.D. Mote Jr., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Past President, US National Academy of Engineering, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] C.D. Mote Jr.

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Emerging Views on the Overall Process Treatment of Municipal Domestic Waste for the Sustainable Use of Landfills in China
    [Author(id=1166127973377171848, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127973557526923, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, authorId=1166127973377171848, language=EN, stringName=Wenbing Tan, firstName=Wenbing, middleName=null, lastName=Tan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    b State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127973666578828, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, authorId=1166127973377171848, language=CN, stringName=檀文炳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    b State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166127973775630734, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127973960180113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, authorId=1166127973775630734, language=EN, stringName=Beidou Xi, firstName=Beidou, middleName=null, lastName=Xi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    b State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127974069232018, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, authorId=1166127973775630734, language=CN, stringName=席北斗, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    b State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166127974174089620, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127974358638999, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, authorId=1166127974174089620, language=EN, stringName=Xinyu Zhao, firstName=Xinyu, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    b State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127974471885208, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, authorId=1166127974174089620, language=CN, stringName=赵昕宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    b State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166127974580937114, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127974761292189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, authorId=1166127974580937114, language=EN, stringName=Qiuling Dang, firstName=Qiuling, middleName=null, lastName=Dang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    c College of Water Sciences, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127974874538398, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452240048553, authorId=1166127974580937114, language=CN, stringName=党秋玲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    c College of Water Sciences, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wenbing Tan , Beidou Xi , Xinyu Zhao , Qiuling Dang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Fully Flexible Loads in Distributed Energy Management: PV, Batteries, Loads and Value Stacking in Virtual Power Plants
    [Author(id=1166127979345666479, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453498339760, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127979488272817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453498339760, authorId=1166127979345666479, language=EN, stringName=Andrew Mears, firstName=Andrew, middleName=null, lastName=Mears, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SwitchDin Pty Ltd., Newcastle West, NSW 2302, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127979593130418, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453498339760, authorId=1166127979345666479, language=CN, stringName=Andrew Mears, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SwitchDin Pty Ltd., Newcastle West, NSW 2302, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166127979702182324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453498339760, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127979840594358, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453498339760, authorId=1166127979702182324, language=EN, stringName=James Martin, firstName=James, middleName=null, lastName=Martin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SwitchDin Pty Ltd., Newcastle West, NSW 2302, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127979945451959, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453498339760, authorId=1166127979702182324, language=CN, stringName=James Martin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= SwitchDin Pty Ltd., Newcastle West, NSW 2302, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Andrew Mears , James Martin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Review
    State-of-the-Art Analysis and Perspectives for Peer-to-Peer Energy Trading
    [Author(id=1166128039923999329, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166128040066605667, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, authorId=1166128039923999329, language=EN, stringName=Yue Zhou, firstName=Yue, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166128040175657572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, authorId=1166128039923999329, language=CN, stringName=周越, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166128040280515174, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166128040418927208, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, authorId=1166128040280515174, language=EN, stringName=Jianzhong Wu, firstName=Jianzhong, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166128040523784809, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, authorId=1166128040280515174, language=CN, stringName=吴建中, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166128040632836715, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166128040771248749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, authorId=1166128040632836715, language=EN, stringName=Chao Long, firstName=Chao, middleName=null, lastName=Long, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166128040884494958, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, authorId=1166128040632836715, language=CN, stringName=龙超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166128040989352560, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166128041127764594, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, authorId=1166128040989352560, language=EN, stringName=Wenlong Ming, firstName=Wenlong, middleName=null, lastName=Ming, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166128041236816499, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926686705836672, authorId=1166128040989352560, language=CN, stringName=明文龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yue Zhou , Jianzhong Wu , Chao Long , Wenlong Ming

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Feature Article
    Theory and Method of Power System Integrated Security Region Irrelevant to Operation States: An Introduction
    [Author(id=1166127918993826019, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127919111266533, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, authorId=1166127918993826019, language=EN, stringName=Yixin Yu, firstName=Yixin, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127919199346918, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, authorId=1166127918993826019, language=CN, stringName=余贻鑫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166127919287427304, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127919404867818, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, authorId=1166127919287427304, language=EN, stringName=Yanli Liu, firstName=Yanli, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127919492948203, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, authorId=1166127919287427304, language=CN, stringName=刘艳丽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166127919581028589, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127919694274799, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, authorId=1166127919581028589, language=EN, stringName=Chao Qin, firstName=Chao, middleName=null, lastName=Qin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127919786549488, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, authorId=1166127919581028589, language=CN, stringName=秦超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166127919883018482, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166127919996264692, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, authorId=1166127919883018482, language=EN, stringName=Tiankai Yang, firstName=Tiankai, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166127920084345077, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159930029952000359, authorId=1166127919883018482, language=CN, stringName=杨添剀, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yixin Yu , Yanli Liu , Chao Qin , Tiankai Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Grid as Smart as the Internet
    [Author(id=1166129505283793892, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129505422205926, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, authorId=1166129505283793892, language=EN, stringName=Yanli Liu, firstName=Yanli, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129505531257831, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, authorId=1166129505283793892, language=CN, stringName=刘艳丽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129505631921129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129505774527467, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, authorId=1166129505631921129, language=EN, stringName=Yixin Yu, firstName=Yixin, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129505879385068, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, authorId=1166129505631921129, language=CN, stringName=余贻鑫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129505988436974, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129506126849008, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, authorId=1166129505988436974, language=EN, stringName=Ning Gao, firstName=Ning, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129506235900913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, authorId=1166129505988436974, language=CN, stringName=高宁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129506336564211, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129506512724982, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, authorId=1166129506336564211, language=EN, stringName=Felix Wu, firstName=Felix, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, *, address=b Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
    c Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129506621776887, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934298109304880, authorId=1166129506336564211, language=CN, stringName=吴复立, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, *, address=b Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
    c Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yanli Liu , Yixin Yu , Ning Gao , Felix Wu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Super Resolution Perception for Improving Data Completeness in Smart Grid State Estimation
    [Author(id=1166129046947029444, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129047089635783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129046947029444, language=EN, stringName=Gaoqi Liang, firstName=Gaoqi, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
    b School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129047177716168, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129046947029444, language=CN, stringName=梁高琪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
    b School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129047265796554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129047379042764, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129047265796554, language=EN, stringName=Guolong Liu, firstName=Guolong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129047467123149, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129047265796554, language=CN, stringName=刘国龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129047551009231, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129047697809874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129047551009231, language=EN, stringName=Junhua Zhao, firstName=Junhua, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
    c Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518172, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129047785890259, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129047551009231, language=CN, stringName=赵俊华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
    c Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518172, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129047869776341, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129047983022551, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129047869776341, language=EN, stringName=Yanli Liu, firstName=Yanli, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129048066908632, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129047869776341, language=CN, stringName=刘艳丽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129048159183322, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129048276623836, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129048159183322, language=EN, stringName=Jinjin Gu, firstName=Jinjin, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129048368898525, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129048159183322, language=CN, stringName=顾津锦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129048452784607, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129048574419425, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129048452784607, language=EN, stringName=Guangzhong Sun, firstName=Guangzhong, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129048658305506, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129048452784607, language=CN, stringName=孙广中, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129048750580196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129048863826406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129048750580196, language=EN, stringName=Zhaoyang Dong, firstName=Zhaoyang, middleName=null, lastName=Dong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129048947712487, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159928913126286206, authorId=1166129048750580196, language=CN, stringName=董朝阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Gaoqi Liang , Guolong Liu , Junhua Zhao , Yanli Liu , Jinjin Gu , Guangzhong Sun , Zhaoyang Dong

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Transactive Demand Response Operation at the Grid Edge using the IEEE 2030.5 Standard
    [Author(id=1166128307755475919, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166128307902276561, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, authorId=1166128307755475919, language=EN, stringName=Javad Fattahi, firstName=Javad, middleName=null, lastName=Fattahi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166128308007134162, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, authorId=1166128307755475919, language=CN, stringName=Javad Fattahi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166128308116186068, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166128308258792406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, authorId=1166128308116186068, language=EN, stringName=Mikhak Samadi, firstName=Mikhak, middleName=null, lastName=Samadi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166128308363650007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, authorId=1166128308116186068, language=CN, stringName=Mikhak Samadi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166128308472701913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166128308611113947, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, authorId=1166128308472701913, language=EN, stringName=Melike Erol-Kantarci, firstName=Melike, middleName=null, lastName=Erol-Kantarci, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166128308715971548, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, authorId=1166128308472701913, language=CN, stringName=Melike Erol-Kantarci, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166128308820829150, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166128308967629792, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, authorId=1166128308820829150, language=EN, stringName=Henry Schriemer, firstName=Henry, middleName=null, lastName=Schriemer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166128309072487393, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927877888172483, authorId=1166128308820829150, language=CN, stringName=Henry Schriemer *, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1N 6N5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Javad Fattahi , Mikhak Samadi , Melike Erol-Kantarci , Henry Schriemer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Jaya Learning-Based Optimization for Optimal Sizing of Stand-Alone Photovoltaic, Wind Turbine, and Battery Systems
    [Author(id=1166130189823566053, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159938024710660581, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130189987143911, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159938024710660581, authorId=1166130189823566053, language=EN, stringName=Asif Khan, firstName=Asif, middleName=null, lastName=Khan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= COMSATS University Islamabad, Islamabad 44000, Pakistan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130190108778728, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159938024710660581, authorId=1166130189823566053, language=CN, stringName=Asif Khan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= COMSATS University Islamabad, Islamabad 44000, Pakistan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130190234607850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159938024710660581, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130190398185708, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159938024710660581, authorId=1166130190234607850, language=EN, stringName=Nadeem Javaid, firstName=Nadeem, middleName=null, lastName=Javaid, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= COMSATS University Islamabad, Islamabad 44000, Pakistan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130190524014829, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159938024710660581, authorId=1166130190234607850, language=CN, stringName=Nadeem Javaid, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= COMSATS University Islamabad, Islamabad 44000, Pakistan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Asif Khan , Nadeem Javaid

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Velocity-Free MS/AE Source Location Method for Three-Dimensional Hole-Containing Structures
    [Author(id=1166129677879402746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129678017814780, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, authorId=1166129677879402746, language=EN, stringName=Longjun Dong, firstName=Longjun, middleName=null, lastName=Dong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Resources and Safety Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129678122672381, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, authorId=1166129677879402746, language=CN, stringName=董陇军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Resources and Safety Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129678227529983, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129678361747713, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, authorId=1166129678227529983, language=EN, stringName=Qingchun Hu, firstName=Qingchun, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Resources and Safety Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129678466605314, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, authorId=1166129678227529983, language=CN, stringName=胡清纯, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Resources and Safety Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129678571462916, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129678709874950, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, authorId=1166129678571462916, language=EN, stringName=Xiaojie Tong, firstName=Xiaojie, middleName=null, lastName=Tong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Resources and Safety Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129678810538247, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, authorId=1166129678571462916, language=CN, stringName=童小洁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Resources and Safety Engineering, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129678915395849, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129679049613579, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, authorId=1166129678915395849, language=EN, stringName=Youfang Liu, firstName=Youfang, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geophysics, Colorado School of Mines, Golden, CO 80401, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129679154471180, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935325680231358, authorId=1166129678915395849, language=CN, stringName=刘有芳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geophysics, Colorado School of Mines, Golden, CO 80401, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Longjun Dong , Qingchun Hu , Xiaojie Tong , Youfang Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Smart Society and Artificial Intelligence: Big Data Scheduling and the Global Standard Method Applied to Smart Maintenance
    [Author(id=1166125818608017524, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125818754818166, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125818608017524, language=EN, stringName=Ruben Foresti, firstName=Ruben, middleName=null, lastName=Foresti, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Medicine and Surgery, University of Parma, Parma 43126, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125818863870071, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125818608017524, language=CN, stringName=Ruben Foresti, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Department of Medicine and Surgery, University of Parma, Parma 43126, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166125818977116281, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125819123916923, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125818977116281, language=EN, stringName=Stefano Rossi, firstName=Stefano, middleName=null, lastName=Rossi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Medicine and Surgery, University of Parma, Parma 43126, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125819232968828, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125818977116281, language=CN, stringName=Stefano Rossi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Medicine and Surgery, University of Parma, Parma 43126, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166125819337826430, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125819488821376, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125819337826430, language=EN, stringName=Matteo Magnani, firstName=Matteo, middleName=null, lastName=Magnani, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Sidel S.p.a., Parma 43126, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125819597873281, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125819337826430, language=CN, stringName=Matteo Magnani, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Sidel S.p.a., Parma 43126, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166125819702730883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125819849531525, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125819702730883, language=EN, stringName=Corrado Guarino Lo Bianco, firstName=Corrado, middleName=null, lastName=Guarino Lo Bianco, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Engineering and Architecture, University of Parma, Parma 43124, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125819962777734, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125819702730883, language=CN, stringName=Corrado Guarino Lo Bianco, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Engineering and Architecture, University of Parma, Parma 43124, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166125820071829640, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125820214435978, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125820071829640, language=EN, stringName=Nicola Delmonte, firstName=Nicola, middleName=null, lastName=Delmonte, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Engineering and Architecture, University of Parma, Parma 43124, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125820327682187, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926790326117096, authorId=1166125820071829640, language=CN, stringName=Nicola Delmonte, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Engineering and Architecture, University of Parma, Parma 43124, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ruben Foresti , Stefano Rossi , Matteo Magnani , Corrado Guarino Lo Bianco , Nicola Delmonte

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.