2020-08-28 , Volume 6 Issue 8

Cover illustration

  •  

    Promptly updated digital elevation models (DEM) that reflect the topography of the Earth are essential for many purposes, including geohazard mitigation. Current technologies for generating DEM are mainly based on images from airborne and low-earth-orbiting (LEO) space-borne sensors. The DEM update rates from such sensors are limited due to the low revisit frequency of the sensor platforms. It is therefore important to explore new ways for generating promptly updated DEM. Research on generating daily DEM based on future geostationary synthetic aperture radar (GEOSAR) data is published in this special issue entitled Geodesy and Surveying Engineering. The research demonstrates that daily DEM generation based on GEOSAR data and the interferometric SAR (InSAR) concept is possible, although further research is needed to enhance the accuracy of such DEM. The cover image shows the topography of an area generated from NASA's Shuttle Radar Topography Mission and used to simulate the quality of GEOSAR interferograms in the research.

    Download cover

  • Select all
    Editorial
  • Editorial for the Special Issue on Geodesy and Survey Engineering
    [Author(id=1166131424064627617, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933752010924733, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131424249176997, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933752010924733, authorId=1166131424064627617, language=EN, stringName=Jiancheng Li, firstName=Jiancheng, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    b Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131424354034598, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933752010924733, authorId=1166131424064627617, language=CN, stringName=李建成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    b Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jiancheng Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • Internet Satellite Boom Presents Astronomical Problems
    [Author(id=1166125671673160184, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452659478955, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125671811572219, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452659478955, authorId=1166125671673160184, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125671891263997, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926452659478955, authorId=1166125671673160184, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Ultraviolet Light Fights New Virus
    [Author(id=1166125680560890471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926451791258024, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125680707691113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926451791258024, authorId=1166125680560890471, language=EN, stringName=Dana Mackenzie, firstName=Dana, middleName=null, lastName=Mackenzie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125680816743018, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926451791258024, authorId=1166125680560890471, language=CN, stringName=Dana Mackenzie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Dana Mackenzie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Neuromorphic Computing Advances Deep-Learning Applications
    [Author(id=1166125739113374444, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453900992945, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125739264369390, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453900992945, authorId=1166125739113374444, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125739373421295, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926453900992945, authorId=1166125739113374444, language=CN, stringName=Chris Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Positioning Australia for the Future
    [Author(id=1166131442616034262, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131442771223512, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, authorId=1166131442616034262, language=EN, stringName=Nicholas Brown, firstName=Nicholas, middleName=null, lastName=Brown, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Director of National Geodesy, Geoscience Australia, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131442888664025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, authorId=1166131442616034262, language=CN, stringName=Nicholas Brown, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Director of National Geodesy, Geoscience Australia, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131443010298843, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131443165488093, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, authorId=1166131443010298843, language=EN, stringName=John Dawson, firstName=John, middleName=null, lastName=Dawson, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Director of Positioning, Geoscience Australia, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131443278734302, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, authorId=1166131443010298843, language=CN, stringName=John Dawson, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Director of Positioning, Geoscience Australia, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131443400369120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131443664610274, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, authorId=1166131443400369120, language=EN, stringName=Ryan Ruddick, firstName=Ryan, middleName=null, lastName=Ruddick, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Director of GNSS Infrastructure and Informatics, Geoscience Australia, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131443777856483, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159933844289807074, authorId=1166131443400369120, language=CN, stringName=Ryan Ruddick, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Director of GNSS Infrastructure and Informatics, Geoscience Australia, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Nicholas Brown , John Dawson , Ryan Ruddick

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Article
    A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008
    [Author(id=1166131378187330335, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131378338325281, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131378187330335, language=EN, stringName=Wei Liang, firstName=Wei, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131378451571490, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131378187330335, language=CN, stringName=梁伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131378564817700, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131378749367079, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131378564817700, language=EN, stringName=Jiancheng Li, firstName=Jiancheng, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    b Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131378858418984, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131378564817700, language=CN, stringName=李建成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    b Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131378967470890, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131379172991789, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131378967470890, language=EN, stringName=Xinyu Xu, firstName=Xinyu, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    b Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131379282043694, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131378967470890, language=CN, stringName=徐新禹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    b Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131379395289904, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131379542090546, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131379395289904, language=EN, stringName=Shengjun Zhang, firstName=Shengjun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131379651142451, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131379395289904, language=CN, stringName=张胜军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131379764388661, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131379911189303, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131379764388661, language=EN, stringName=Yongqi Zhao, firstName=Yongqi, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131380020241208, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159939435259290437, authorId=1166131379764388661, language=CN, stringName=赵永奇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wei Liang , Jiancheng Li , Xinyu Xu , Shengjun Zhang , Yongqi Zhao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Realization of an Optimal Dynamic Geodetic Reference Frame in China: Methodology and Applications
    [Author(id=1166131750113042986, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131750268232236, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131750113042986, language=EN, stringName=Pengfei Cheng, firstName=Pengfei, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chinese Academy of Surveying and Mapping, Beijing 100036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131750385672749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131750113042986, language=CN, stringName=程鹏飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chinese Academy of Surveying and Mapping, Beijing 100036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131750498918959, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131750658302513, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131750498918959, language=EN, stringName=Yingyan Cheng, firstName=Yingyan, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chinese Academy of Surveying and Mapping, Beijing 100036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131750775743026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131750498918959, language=CN, stringName=成英燕, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chinese Academy of Surveying and Mapping, Beijing 100036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131750888989236, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131751044178486, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131750888989236, language=EN, stringName=Xiaoming Wang, firstName=Xiaoming, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131751157424695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131750888989236, language=CN, stringName=王晓明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131751279059513, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131751430054459, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131751279059513, language=EN, stringName=Suqin Wu, firstName=Suqin, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131751543300668, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131751279059513, language=CN, stringName=吴素芹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131751664935486, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131751815930432, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131751664935486, language=EN, stringName=Yantian Xu, firstName=Yantian, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chinese Academy of Surveying and Mapping, Beijing 100036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131751933370945, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935527459807434, authorId=1166131751664935486, language=CN, stringName=徐彦田, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chinese Academy of Surveying and Mapping, Beijing 100036, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Pengfei Cheng , Yingyan Cheng , Xiaoming Wang , Suqin Wu , Yantian Xu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Consistency of MGEX Orbit and Clock Products
    [Author(id=1166125802816462851, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926700970664596, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125802963263494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926700970664596, authorId=1166125802816462851, language=EN, stringName=Peter Steigenberger, firstName=Peter, middleName=null, lastName=Steigenberger, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= German Aerospace Center, German Space Operations Center, Weßling 82234, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125803072315400, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926700970664596, authorId=1166125802816462851, language=CN, stringName=Peter Steigenberger, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= German Aerospace Center, German Space Operations Center, Weßling 82234, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166125803185561611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926700970664596, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166125803328167951, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926700970664596, authorId=1166125803185561611, language=EN, stringName=Oliver Montenbruck, firstName=Oliver, middleName=null, lastName=Montenbruck, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= German Aerospace Center, German Space Operations Center, Weßling 82234, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166125803441414161, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159926700970664596, authorId=1166125803185561611, language=CN, stringName=Oliver Montenbruck, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= German Aerospace Center, German Space Operations Center, Weßling 82234, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peter Steigenberger , Oliver Montenbruck

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Precise Orbit Determination for the FY-3C Satellite Using Onboard BDS and GPS Observations from 2013, 2015, and 2017
    [Author(id=1166130347558757107, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130347739112182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130347558757107, language=EN, stringName=Xingxing Li, firstName=Xingxing, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    b German Research Centre for Geosciences (GFZ), Potsdam 14473, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130347848164087, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130347558757107, language=CN, stringName=李星星, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    b German Research Centre for Geosciences (GFZ), Potsdam 14473, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130347965604601, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130348108210939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130347965604601, language=EN, stringName=Keke Zhang, firstName=Keke, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130348217262844, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130347965604601, language=CN, stringName=张柯柯, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130348330509054, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130348515058433, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130348330509054, language=EN, stringName=Xiangguang Meng, firstName=Xiangguang, middleName=null, lastName=Meng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
    d Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130348619916034, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130348330509054, language=CN, stringName=孟祥广, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
    d Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130348728967940, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130348879962886, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130348728967940, language=EN, stringName=Wei Zhang, firstName=Wei, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130348989014791, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130348728967940, language=CN, stringName=张伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130349098066697, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130349244867339, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130349098066697, language=EN, stringName=Qian Zhang, firstName=Qian, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130349358113548, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130349098066697, language=CN, stringName=张倩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130349467165454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130349618160400, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130349467165454, language=EN, stringName=Xiaohong Zhang, firstName=Xiaohong, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130349731406609, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130349467165454, language=CN, stringName=张小红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130349836264211, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130349983064853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130349836264211, language=EN, stringName=Xin Li, firstName=Xin, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130350100505366, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934389972951160, authorId=1166130349836264211, language=CN, stringName=李昕, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xingxing Li , Keke Zhang , Xiangguang Meng , Wei Zhang , Qian Zhang , Xiaohong Zhang , Xin Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Analysis of the Quality of Daily DEM Generation with Geosynchronous InSAR
    [Author(id=1166130431411282907, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130431616803806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, authorId=1166130431411282907, language=EN, stringName=Zefa Yang, firstName=Zefa, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    b Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130431738438623, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, authorId=1166130431411282907, language=CN, stringName=杨泽发, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    b Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130431864267745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130432027845603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, authorId=1166130431864267745, language=EN, stringName=Qingjun Zhang, firstName=Qingjun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c China Aerospace Science and Technology Corporation, Beijing 100048, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130432145286116, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, authorId=1166130431864267745, language=CN, stringName=张庆君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c China Aerospace Science and Technology Corporation, Beijing 100048, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130432266920934, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130432430498792, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, authorId=1166130432266920934, language=EN, stringName=Xiaoli Ding, firstName=Xiaoli, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130432556327913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, authorId=1166130432266920934, language=CN, stringName=丁晓利, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130432677962731, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130432837346285, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, authorId=1166130432677962731, language=EN, stringName=Wu Chen, firstName=Wu, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130432958981102, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934897898971624, authorId=1166130432677962731, language=CN, stringName=陈武, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zefa Yang , Qingjun Zhang , Xiaoli Ding , Wu Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques
    [Author(id=1166131533112336621, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131533263331567, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, authorId=1166131533112336621, language=EN, stringName=Mutiara Syifa, firstName=Mutiara, middleName=null, lastName=Syifa, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Science Education, Kangwon National University, Gangwon-do 24341, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131533384966384, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, authorId=1166131533112336621, language=CN, stringName=Mutiara Syifa, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Science Education, Kangwon National University, Gangwon-do 24341, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131533502406898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131533653401844, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, authorId=1166131533502406898, language=EN, stringName=Sung-Jae Park, firstName=Sung-Jae, middleName=null, lastName=Park, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Science Education, Kangwon National University, Gangwon-do 24341, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131533766648053, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, authorId=1166131533502406898, language=CN, stringName=Sung-Jae Park, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Science Education, Kangwon National University, Gangwon-do 24341, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166131533888282871, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166131534039277817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, authorId=1166131533888282871, language=EN, stringName=Chang-Wook Lee, firstName=Chang-Wook, middleName=null, lastName=Lee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Science Education, Kangwon National University, Gangwon-do 24341, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166131534152524026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159934305654857778, authorId=1166131533888282871, language=CN, stringName=Chang-Wook Lee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Science Education, Kangwon National University, Gangwon-do 24341, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mutiara Syifa , Sung-Jae Park , Chang-Wook Lee

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Precise Three-Dimensional Deformation Retrieval in Large and Complex Deformation Areas via Integration of Offsets-Based Unwrapping and Improved Multiple-Aperture SAR Interferometry: Application to the 2016 Kumamoto Earthquake
    [Author(id=1166129236160471504, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927053250257060, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129236273717714, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927053250257060, authorId=1166129236160471504, language=EN, stringName=Won-Kyung Baek, firstName=Won-Kyung, middleName=null, lastName=Baek, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Geoinformatics, University of Seoul, Seoul 02504, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129236357603795, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927053250257060, authorId=1166129236160471504, language=CN, stringName=Won-Kyung Baek, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Geoinformatics, University of Seoul, Seoul 02504, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129236441489877, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927053250257060, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129236550541783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927053250257060, authorId=1166129236441489877, language=EN, stringName=Hyung-Sup Jung, firstName=Hyung-Sup, middleName=null, lastName=Jung, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Geoinformatics, University of Seoul, Seoul 02504, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129236634427864, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159927053250257060, authorId=1166129236441489877, language=CN, stringName=Hyung-Sup Jung, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Geoinformatics, University of Seoul, Seoul 02504, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Won-Kyung Baek , Hyung-Sup Jung

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Mechanical Analysis and Performance Optimization for the Lunar Rover’s Vane-Telescopic Walking Wheel
    [Author(id=1166129823526609561, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129823774073501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129823526609561, language=EN, stringName=Lu Yang, firstName=Lu, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
    b National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
    d College of Transportation, Jilin University, Changchun 130025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129823899902622, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129823526609561, language=CN, stringName=杨璐, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
    b National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
    d College of Transportation, Jilin University, Changchun 130025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129824021537440, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129824222864035, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129824021537440, language=EN, stringName=Bowen Cai, firstName=Bowen, middleName=null, lastName=Cai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
    b National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129824348693156, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129824021537440, language=CN, stringName=蔡博文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
    b National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129824474522278, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129824675848873, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129824474522278, language=EN, stringName=Ronghui Zhang, firstName=Ronghui, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c Guangdong Key Laboratory of Intelligent Transportation System, School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China
    d College of Transportation, Jilin University, Changchun 130025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129824801677994, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129824474522278, language=CN, stringName=张荣辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c Guangdong Key Laboratory of Intelligent Transportation System, School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China
    d College of Transportation, Jilin University, Changchun 130025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129824923312812, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129825086890670, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129824923312812, language=EN, stringName=Kening Li, firstName=Kening, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d College of Transportation, Jilin University, Changchun 130025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129825212719791, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129824923312812, language=CN, stringName=李克宁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d College of Transportation, Jilin University, Changchun 130025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129825338548913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129825506321075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129825338548913, language=EN, stringName=Zixian Zhang, firstName=Zixian, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Mechanical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129825627955892, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129825338548913, language=CN, stringName=张子贤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Mechanical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129825753785014, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129825917362872, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129825753785014, language=EN, stringName=Jiehao Lei, firstName=Jiehao, middleName=null, lastName=Lei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129826043191993, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129825753785014, language=CN, stringName=雷洁浩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129826164826811, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129826370347710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129826164826811, language=EN, stringName=Baichao Chen, firstName=Baichao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, g, address=d College of Transportation, Jilin University, Changchun 130025, China
    g China Academy of Space Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129826491982527, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129826164826811, language=CN, stringName=陈百超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, g, address=d College of Transportation, Jilin University, Changchun 130025, China
    g China Academy of Space Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166129826626200257, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166129826789778115, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129826626200257, language=EN, stringName=Rongben Wang, firstName=Rongben, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d College of Transportation, Jilin University, Changchun 130025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166129826915607236, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935933854311067, authorId=1166129826626200257, language=CN, stringName=王荣本, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d College of Transportation, Jilin University, Changchun 130025, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Lu Yang , Bowen Cai , Ronghui Zhang , Kening Li , Zixian Zhang , Jiehao Lei , Baichao Chen , Rongben Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A New Model Using Multiple Feature Clustering and Neural Networks for Forecasting Hourly PM2.5 Concentrations, and Its Applications in China
    [Author(id=1166130478546870476, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130478706254030, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, authorId=1166130478546870476, language=EN, stringName=Hui Liu, firstName=Hui, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130478823694543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, authorId=1166130478546870476, language=CN, stringName=刘辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130478936940753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130479092130003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, authorId=1166130478936940753, language=EN, stringName=Zhihao Long, firstName=Zhihao, middleName=null, lastName=Long, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130479213764820, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, authorId=1166130478936940753, language=CN, stringName=龙治豪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130479327011030, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130479482200280, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, authorId=1166130479327011030, language=EN, stringName=Zhu Duan, firstName=Zhu, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130479599640793, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, authorId=1166130479327011030, language=CN, stringName=段铸, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166130479721275611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166130479876464861, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, authorId=1166130479721275611, language=EN, stringName=Huipeng Shi, firstName=Huipeng, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166130479989711070, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159935228422710105, authorId=1166130479721275611, language=CN, stringName=施惠鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hui Liu , Zhihao Long , Zhu Duan , Huipeng Shi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.