2021-06-30 , Volume 7 Issue 6

Cover illustration

  •  

    Intelligent process planning is a key technology in intelligent manufacturing. Process-planning problems are extremely difficult. By analyzing the process network graph and the topological relationship of the nodes inside the network, a mixed-integer linear programming model can be established based on the OR node with its process-selecting logic in order to obtain optimal process plans. This modeling technology, which has been verified multiple times in both famous benchmarks and real-life production cases, can break through the limitations of traditional process-planning technologies. In real-life production, the operator only needs to input the process parameters of the workpiece in order to automatically obtain the optimal process plan in a short computation time and thus be able to improve the production efficiency.

    Download cover

  • Select all
    Editorial
  • Hydrogen Energy: A Global Trend and China’s Strategy
    [Author(id=1166109647003378170, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888750442504741, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109647162761725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888750442504741, authorId=1166109647003378170, language=EN, stringName=Hailing Tu, firstName=Hailing, middleName=null, lastName=Tu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a General Research Institute for Nonferrous Metals, Beijing 100088, China
    b GRINM Group Corporation Ltd., Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109647255036414, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888750442504741, authorId=1166109647003378170, language=CN, stringName=屠海令, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a General Research Institute for Nonferrous Metals, Beijing 100088, China
    b GRINM Group Corporation Ltd., Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Hailing Tu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial for the Special Issue on Intelligent Manufacturing
    [Author(id=1166109135294095554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109135440896196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, authorId=1166109135294095554, language=EN, stringName=Peigen Li, firstName=Peigen Li, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109135549948101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, authorId=1166109135294095554, language=CN, stringName=李培根, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109135663194311, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109135809994953, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, authorId=1166109135663194311, language=EN, stringName=Andrew Kusiak, firstName=Andrew Kusiak, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Industrial and Systems Engineering, The University of Iowa, Iowa City, IA 52242-1527, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109135923241163, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, authorId=1166109135663194311, language=CN, stringName=Andrew Kusiak, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Industrial and Systems Engineering, The University of Iowa, Iowa City, IA 52242-1527, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109136036487374, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109136187482320, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, authorId=1166109136036487374, language=EN, stringName=Liang Gao, firstName=Liang Gao, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109136296534225, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, authorId=1166109136036487374, language=CN, stringName=高亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109136413974739, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109136556581077, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, authorId=1166109136413974739, language=EN, stringName=Weiming Shen, firstName=Weiming Shen, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109137579991254, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887750180692149, authorId=1166109136413974739, language=CN, stringName=沈卫明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peigen Li , Andrew Kusiak , Liang Gao , Weiming Shen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • Artificial Intelligence Cracks a 50-Year-Old Grand Challenge in Biology
    [Author(id=1166107795411100474, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885390800806216, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107795541123900, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885390800806216, authorId=1166107795411100474, language=EN, stringName=Sean O'Neill, firstName=Sean, middleName=null, lastName=O'Neill, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107795633398589, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885390800806216, authorId=1166107795411100474, language=CN, stringName=Sean O'Neill, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sean O'Neill

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Cold War Satellite Imagery Gets New Life
    [Author(id=1166107796770054990, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576534741536, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107796883301202, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576534741536, authorId=1166107796770054990, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107796975575892, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576534741536, authorId=1166107796770054990, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Coronavirus Variants—Will New mRNA Vaccines Meet the Challenge?
    [Author(id=1166107790356964102, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886569857409564, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107790478598920, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886569857409564, authorId=1166107790356964102, language=EN, stringName=Jennifer Welsh, firstName=Jennifer, middleName=null, lastName=Welsh, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107790566679305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886569857409564, authorId=1166107790356964102, language=CN, stringName=Jennifer Welsh, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jennifer Welsh

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • The Vision of France, Germany, and the European Union on Future Hydrogen Energy Research and Innovation
    [Author(id=1166109670881550905, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109671019962939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, authorId=1166109670881550905, language=EN, stringName=Fermin Cuevas, firstName=Fermin, middleName=null, lastName=Cuevas, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= University of Paris Est Creteil, CNRS, ICMPE, UMR 7182, Thiais 94320, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109671116431932, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, authorId=1166109670881550905, language=CN, stringName=Fermin Cuevas, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= University of Paris Est Creteil, CNRS, ICMPE, UMR 7182, Thiais 94320, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109671208706622, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109671338730048, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, authorId=1166109671208706622, language=EN, stringName=Junxian Zhang, firstName=Junxian, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= University of Paris Est Creteil, CNRS, ICMPE, UMR 7182, Thiais 94320, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109671431004737, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, authorId=1166109671208706622, language=CN, stringName=张俊先, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= University of Paris Est Creteil, CNRS, ICMPE, UMR 7182, Thiais 94320, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109671531668035, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109671665885765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, authorId=1166109671531668035, language=EN, stringName=Michel Latroche, firstName=Michel, middleName=null, lastName=Latroche, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= University of Paris Est Creteil, CNRS, ICMPE, UMR 7182, Thiais 94320, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109671779131974, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888770327700039, authorId=1166109671531668035, language=CN, stringName=Michel Latroche, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= University of Paris Est Creteil, CNRS, ICMPE, UMR 7182, Thiais 94320, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Fermin Cuevas , Junxian Zhang , Michel Latroche

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • The Development Trend of and Suggestions for China’s Hydrogen Energy Industry
    [Author(id=1166110125766402903, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768230548027, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110125904814938, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768230548027, authorId=1166110125766402903, language=EN, stringName=Xiaoqiang Zhang, firstName=Xiaoqiang, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Center for International Economic Exchanges, Beijing 100050, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110126005478235, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768230548027, authorId=1166110125766402903, language=CN, stringName=张晓强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Center for International Economic Exchanges, Beijing 100050, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiaoqiang Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Insight from Japan’s Hydrogen Strategy and Activities
    [Author(id=1166110145701929898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888791127253621, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110145836147628, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888791127253621, authorId=1166110145701929898, language=EN, stringName=Hai-Wen Li, firstName=Hai-Wen, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Hefei General Machinery Research Institute, Hefei 230031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110145932616621, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888791127253621, authorId=1166110145701929898, language=CN, stringName=李海文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Hefei General Machinery Research Institute, Hefei 230031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110146029085615, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888791127253621, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110146163303345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888791127253621, authorId=1166110146029085615, language=EN, stringName=Nobuyuki Nishimiya, firstName=Nobuyuki, middleName=null, lastName=Nishimiya, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Nihon University, Tokyo 101-8308, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110146259772338, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888791127253621, authorId=1166110146029085615, language=CN, stringName=Nobuyuki Nishimiya, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Nihon University, Tokyo 101-8308, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hai-Wen Li , Nobuyuki Nishimiya

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Hydrogen Energy in Shandong: Building on the Momentum and Joining the Trend of Our Times
    [Author(id=1166110091758985952, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888748131443236, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110091884815074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888748131443236, authorId=1166110091758985952, language=EN, stringName=Wen Ling, firstName=Wen, middleName=null, lastName=Ling, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Vice Governor of Shandong Province, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110091985478371, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888748131443236, authorId=1166110091758985952, language=CN, stringName=凌文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Vice Governor of Shandong Province, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wen Ling

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Fuel Cell Heavy-Duty Trucks: Application and Prospect
    [Author(id=1166110125015622471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110125154034505, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, authorId=1166110125015622471, language=EN, stringName=Xuguang Tan, firstName=Xuguang, middleName=null, lastName=Tan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Weichai Power Co., Ltd., Weifang 261061, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110125250503498, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, authorId=1166110125015622471, language=CN, stringName=谭旭光, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Weichai Power Co., Ltd., Weifang 261061, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110125351166796, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110125476995918, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, authorId=1166110125351166796, language=EN, stringName=Wenmiao Chen, firstName=Wenmiao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Weichai Power Co., Ltd., Weifang 261061, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110125577659215, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, authorId=1166110125351166796, language=CN, stringName=陈文淼, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Weichai Power Co., Ltd., Weifang 261061, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110125669933908, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110125799957336, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, authorId=1166110125669933908, language=EN, stringName=Fengwen Pan, firstName=Fengwen, middleName=null, lastName=Pan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Weichai Power Co., Ltd., Weifang 261061, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110125896426329, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888768595452476, authorId=1166110125669933908, language=CN, stringName=潘凤文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Weichai Power Co., Ltd., Weifang 261061, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xuguang Tan , Wenmiao Chen , Fengwen Pan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Expediting the Innovation and Application of Solid Hydrogen Storage Technology
    [Author(id=1166110092614623981, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888747506491939, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110092782396144, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888747506491939, authorId=1166110092614623981, language=EN, stringName=Lijun Jiang, firstName=Lijun, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, GRINM Group Co., Ltd., Beijing 100088, China
    b GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110092883059441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888747506491939, authorId=1166110092614623981, language=CN, stringName=蒋利军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, GRINM Group Co., Ltd., Beijing 100088, China
    b GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Lijun Jiang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Humans are Not Machines—Anthropocentric Human–Machine Symbiosis for Ultra-Flexible Smart Manufacturing
    [Author(id=1166109153786781995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109153920999725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, authorId=1166109153786781995, language=EN, stringName=Yuqian Lu, firstName=Yuqian, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109154030051630, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, authorId=1166109153786781995, language=CN, stringName=陆玉前, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109154155880752, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109154319458610, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, authorId=1166109154155880752, language=EN, stringName=Juvenal Sastre Adrados, firstName=Juvenal Sastre, middleName=null, lastName=Adrados, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109154436899123, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, authorId=1166109154155880752, language=CN, stringName=Juvenal Sastre Adrados, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109154562728245, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109154759860535, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, authorId=1166109154562728245, language=EN, stringName=Saahil Shivneel Chand, firstName=Saahil Shivneel, middleName=null, lastName=Chand, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109154877301048, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, authorId=1166109154562728245, language=CN, stringName=Saahil Shivneel Chand, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109154998935866, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109155158319420, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, authorId=1166109154998935866, language=EN, stringName=Lihui Wang, firstName=Lihui, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109155279954237, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887758913233079, authorId=1166109154998935866, language=CN, stringName=王力翚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yuqian Lu , Juvenal Sastre Adrados , Saahil Shivneel Chand , Lihui Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Review
    Smart Manufacturing and Intelligent Manufacturing: A Comparative Review
    [Author(id=1166109842692825233, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109842877374613, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109842692825233, language=EN, stringName=Baicun Wang, firstName=Baicun, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
    b Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
    c Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109842973843606, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109842692825233, language=CN, stringName=王柏村, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
    b Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
    c Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109843061923992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109843183558810, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109843061923992, language=EN, stringName=Fei Tao, firstName=Fei, middleName=null, lastName=Tao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109843280027803, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109843061923992, language=CN, stringName=陶飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109843372302493, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109843493937311, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109843372302493, language=EN, stringName=Xudong Fang, firstName=Xudong, middleName=null, lastName=Fang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109843586212000, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109843372302493, language=CN, stringName=方续东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109843682680994, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109843800121508, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109843682680994, language=EN, stringName=Chao Liu, firstName=Chao, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f School of Engineering, Cardiff University, Cardiff CF24 3AA, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109843892396197, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109843682680994, language=CN, stringName=刘超, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f School of Engineering, Cardiff University, Cardiff CF24 3AA, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109843988865191, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109844118888617, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109843988865191, language=EN, stringName=Yufei Liu, firstName=Yufei, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109844211163306, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109843988865191, language=CN, stringName=刘宇飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109844303437996, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109844420878510, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109844303437996, language=EN, stringName=Theodor Freiheit, firstName=Theodor, middleName=null, lastName=Freiheit, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109844517347503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887898449338766, authorId=1166109844303437996, language=CN, stringName=Theodor Freiheit, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Baicun Wang , Fei Tao , Xudong Fang , Chao Liu , Yufei Liu , Theodor Freiheit

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Reiew
    Automatic Visual Leakage Detection and Localization from Pipelines in Chemical Process Plants Using Machine Vision Techniques
    [Author(id=1166109538031166413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109538152801231, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, authorId=1166109538031166413, language=EN, stringName=Mina Fahimipirehgalin, firstName=Mina, middleName=null, lastName=Fahimipirehgalin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Automation and Information Systems, Technical University of Munich, Garching 85748, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109538245075920, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, authorId=1166109538031166413, language=CN, stringName=Mina Fahimipirehgalin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Automation and Information Systems, Technical University of Munich, Garching 85748, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109538341544914, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109538463179732, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, authorId=1166109538341544914, language=EN, stringName=Emanuel Trunzer, firstName=Emanuel, middleName=null, lastName=Trunzer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Automation and Information Systems, Technical University of Munich, Garching 85748, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109538555454421, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, authorId=1166109538341544914, language=CN, stringName=Emanuel Trunzer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Automation and Information Systems, Technical University of Munich, Garching 85748, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109538651923415, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109538773558233, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, authorId=1166109538651923415, language=EN, stringName=Matthias Odenweller, firstName=Matthias, middleName=null, lastName=Odenweller, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Evonik Technology and Infrastructure GmbH, Hanau 63450, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109538870027226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, authorId=1166109538651923415, language=CN, stringName=Matthias Odenweller, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Evonik Technology and Infrastructure GmbH, Hanau 63450, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109538962301916, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109539088131038, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, authorId=1166109538962301916, language=EN, stringName=Birgit Vogel-Heuser, firstName=Birgit, middleName=null, lastName=Vogel-Heuser, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Automation and Information Systems, Technical University of Munich, Garching 85748, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109539184600031, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888105803146151, authorId=1166109538962301916, language=CN, stringName=Birgit Vogel-Heuser, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Automation and Information Systems, Technical University of Munich, Garching 85748, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mina Fahimipirehgalin , Emanuel Trunzer , Matthias Odenweller , Birgit Vogel-Heuser

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Gaze Estimation via a Differential Eyes’ Appearances Network with a Reference Grid
    [Author(id=1166109091660750919, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109091807551561, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109091660750919, language=EN, stringName=Song Gu, firstName=Song, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chengdu Aeronautic Polytechnic, Chengdu 610100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109091916603466, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109091660750919, language=CN, stringName=顾菘, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chengdu Aeronautic Polytechnic, Chengdu 610100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109092034043980, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109092180844622, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109092034043980, language=EN, stringName=Lihui Wang, firstName=Lihui, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109092294090831, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109092034043980, language=CN, stringName=王力翚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109092403142737, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109092558331987, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109092403142737, language=EN, stringName=Long He, firstName=Long, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chengdu Aeronautic Polytechnic, Chengdu 610100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109092667383892, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109092403142737, language=CN, stringName=何龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chengdu Aeronautic Polytechnic, Chengdu 610100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109092776435798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109092927430744, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109092776435798, language=EN, stringName=Xianding He, firstName=Xianding, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chengdu Aeronautic Polytechnic, Chengdu 610100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109093040676953, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109092776435798, language=CN, stringName=何先定, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chengdu Aeronautic Polytechnic, Chengdu 610100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109093149728859, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109093296529501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109093149728859, language=EN, stringName=Jian Wang, firstName=Jian, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chengdu Aeronautic Polytechnic, Chengdu 610100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109093409775710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888099947897720, authorId=1166109093149728859, language=CN, stringName=王建, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chengdu Aeronautic Polytechnic, Chengdu 610100, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Song Gu , Lihui Wang , Long He , Xianding He , Jian Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Novel Attribute-Based Encryption Approach with Integrity Verification for CAD Assembly Models
    [Author(id=1166109602396955004, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109602518589822, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109602396955004, language=EN, stringName=Yueting Yang, firstName=Yueting, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Computer Science, Wuhan University, Wuhan 430072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109602615058815, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109602396955004, language=CN, stringName=杨月婷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Computer Science, Wuhan University, Wuhan 430072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109602707333505, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109602862522756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109602707333505, language=EN, stringName=Fazhi He, firstName=Fazhi, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Computer Science, Wuhan University, Wuhan 430072, China
    b State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109602958991749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109602707333505, language=CN, stringName=何发智, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Computer Science, Wuhan University, Wuhan 430072, China
    b State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109603055460743, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109603181289865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109603055460743, language=EN, stringName=Soonhung Han, firstName=Soonhung, middleName=null, lastName=Han, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Division of Ocean Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109603273564554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109603055460743, language=CN, stringName=Soonhung Han, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Division of Ocean Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109603370033548, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109603491668366, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109603370033548, language=EN, stringName=Yaqian Liang, firstName=Yaqian, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Computer Science, Wuhan University, Wuhan 430072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109603583943055, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109603370033548, language=CN, stringName=梁亚倩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Computer Science, Wuhan University, Wuhan 430072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109603680412049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109603810435475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109603680412049, language=EN, stringName=Yuan Cheng, firstName=Yuan, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Information Management, Wuhan University, Wuhan 430072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109603902710164, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888174606508193, authorId=1166109603680412049, language=CN, stringName=程媛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Information Management, Wuhan University, Wuhan 430072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yueting Yang , Fazhi He , Soonhung Han , Yaqian Liang , Yuan Cheng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Comparison of Production-Triggering Strategies for Manufacturing Enterprises under Random Orders
    [Author(id=1166108932180730273, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108932306559395, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, authorId=1166108932180730273, language=EN, stringName=Longfei Zhou, firstName=Longfei, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Massachusetts Institute of Technology, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108932403028388, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, authorId=1166108932180730273, language=CN, stringName=周龙飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Massachusetts Institute of Technology, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108932491108774, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108932621132200, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, authorId=1166108932491108774, language=EN, stringName=Lin Zhang, firstName=Lin, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108932713406889, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, authorId=1166108932491108774, language=CN, stringName=张霖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108932809875883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108932931510701, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, authorId=1166108932809875883, language=EN, stringName=Yajun Fang, firstName=Yajun, middleName=null, lastName=Fang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Massachusetts Institute of Technology, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108933023785390, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887964211831360, authorId=1166108932809875883, language=CN, stringName=方亚隽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Massachusetts Institute of Technology, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Longfei Zhou , Lin Zhang , Yajun Fang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Novel MILP Model Based on the Topology of a Network Graph for Process Planning in an Intelligent Manufacturing System
    [Author(id=1166110468906606938, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110469036630365, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, authorId=1166110468906606938, language=EN, stringName=Qihao Liu, firstName=Qihao, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110469137293662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, authorId=1166110468906606938, language=CN, stringName=刘齐浩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110469229568352, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110469355397474, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, authorId=1166110469229568352, language=EN, stringName=Xinyu Li, firstName=Xinyu, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110469456060771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, authorId=1166110469229568352, language=CN, stringName=李新宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110469548335461, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110469678358887, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, authorId=1166110469548335461, language=EN, stringName=Liang Gao, firstName=Liang, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110469808382312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888952662483899, authorId=1166110469548335461, language=CN, stringName=高亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Qihao Liu , Xinyu Li , Liang Gao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Multi-Layer Collaboration Framework for Industrial Parks with 5G Vehicle-to-Everything Networks
    [Author(id=1166110061815849591, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110061941678713, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, authorId=1166110061815849591, language=EN, stringName=Yanjun Shi, firstName=Yanjun, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110062033953402, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, authorId=1166110061815849591, language=CN, stringName=史彦军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110062130422396, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110062256251518, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, authorId=1166110062130422396, language=EN, stringName=Qiaomei Han, firstName=Qiaomei, middleName=null, lastName=Han, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110062348526207, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, authorId=1166110062130422396, language=CN, stringName=韩俏梅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110062461772417, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110062583407235, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, authorId=1166110062461772417, language=EN, stringName=Weiming Shen *, firstName=Weiming Shen, middleName=null, lastName=*, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110062679876228, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, authorId=1166110062461772417, language=CN, stringName=沈卫明*, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110062776345222, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110062897980040, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, authorId=1166110062776345222, language=EN, stringName=Xianbin Wang, firstName=Xianbin, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110062994449033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888114674098235, authorId=1166110062776345222, language=CN, stringName=王现斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yanjun Shi , Qiaomei Han , Weiming Shen * , Xianbin Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Bioprinting of Small-Diameter Blood Vessels
    [Author(id=1166108782158865013, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108782251139702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108782158865013, language=EN, stringName=Xia Cao, firstName=Xia, middleName=null, lastName=Cao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108782347608695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108782158865013, language=CN, stringName=曹霞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108782439883385, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108782536352378, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108782439883385, language=EN, stringName=Sushila Maharjan, firstName=Sushila, middleName=null, lastName=Maharjan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108782628627067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108782439883385, language=CN, stringName=Sushila Maharjan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=#, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108782720901757, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108782855119487, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108782720901757, language=EN, stringName=Ramla Ashfaq, firstName=Ramla, middleName=null, lastName=Ashfaq, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108782947394176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108782720901757, language=CN, stringName=Ramla Ashfaq, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108783043863170, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108783165497988, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108783043863170, language=EN, stringName=Jane Shin, firstName=Jane, middleName=null, lastName=Shin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108783261966982, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108783043863170, language=CN, stringName=Jane Shin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108783366824584, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108783492653706, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108783366824584, language=EN, stringName=Yu Shrike Zhang, firstName=Yu Shrike, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108783584928395, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887805906215158, authorId=1166108783366824584, language=CN, stringName=Yu Shrike Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xia Cao , Sushila Maharjan , Ramla Ashfaq , Jane Shin , Yu Shrike Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    The State-of-the-Art Review on Applications of Intrusive Sensing, Image Processing Techniques, and Machine Learning Methods in Pavement Monitoring and Analysis
    [Author(id=1166110482802336224, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110482911388130, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110482802336224, language=EN, stringName=Yue Hou, firstName=Yue, middleName=null, lastName=Hou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110482991079907, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110482802336224, language=CN, stringName=侯越, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110483074965989, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110483204989416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110483074965989, language=EN, stringName=Qiuhan Li, firstName=Qiuhan, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
    b Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110483288875497, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110483074965989, language=CN, stringName=李秋晗, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
    b Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110483368567275, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110483502785006, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110483368567275, language=EN, stringName=Chen Zhang, firstName=Chen, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
    b Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110483582476783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110483368567275, language=CN, stringName=张晨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
    b Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110483666362865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110483771220467, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110483666362865, language=EN, stringName=Guoyang Lu, firstName=Guoyang, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110483850912244, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110483666362865, language=CN, stringName=陆国阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110483930604022, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110484035461624, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110483930604022, language=EN, stringName=Zhoujing Ye, firstName=Zhoujing, middleName=null, lastName=Ye, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110484119347705, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110483930604022, language=CN, stringName=叶周景, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110484194845179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110484329062910, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110484194845179, language=EN, stringName=Yihan Chen, firstName=Yihan, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, e, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
    e School of Transportation, Southeast University, Nanjing 211189, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110484404560383, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110484194845179, language=CN, stringName=陈逸涵, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, e, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
    e School of Transportation, Southeast University, Nanjing 211189, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110484488446465, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110484635247107, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110484488446465, language=EN, stringName=Linbing Wang, firstName=Linbing, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110484714938884, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110484488446465, language=CN, stringName=汪林兵, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110484794630662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110484899488264, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110484794630662, language=EN, stringName=Dandan Cao, firstName=Dandan, middleName=null, lastName=Cao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110484983374345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888948115858361, authorId=1166110484794630662, language=CN, stringName=曹丹丹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yue Hou , Qiuhan Li , Chen Zhang , Guoyang Lu , Zhoujing Ye , Yihan Chen , Linbing Wang , Dandan Cao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber
    [Author(id=1166110346827195173, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110346999161640, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110346827195173, language=EN, stringName=Xiong Xu, firstName=Xiong, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
    b School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110347104019241, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110346827195173, language=CN, stringName=徐雄, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
    b School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110347208876843, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110347347288877, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110347208876843, language=EN, stringName=Zhen Leng, firstName=Zhen, middleName=null, lastName=Leng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110347456340782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110347208876843, language=CN, stringName=冷真, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110347557004080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110347699610418, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110347557004080, language=EN, stringName=Jingting Lan, firstName=Jingting, middleName=null, lastName=Lan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110347800273715, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110347557004080, language=CN, stringName=兰景婷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110347905131317, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110348043543351, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110347905131317, language=EN, stringName=Wei Wang, firstName=Wei, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Henan Province Highway Management Center of Toll and Loan, Zhengzhou 450000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110348144206648, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110347905131317, language=CN, stringName=王伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Henan Province Highway Management Center of Toll and Loan, Zhengzhou 450000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110348244869946, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110348383281980, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110348244869946, language=EN, stringName=Jiangmiao Yu, firstName=Jiangmiao, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110348483945277, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110348244869946, language=CN, stringName=虞将苗, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110348584608575, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110348735603521, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110348584608575, language=EN, stringName=Yawei Bai, firstName=Yawei, middleName=null, lastName=Bai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Henan Province Highway Management Center of Toll and Loan, Zhengzhou 450000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110348836266818, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110348584608575, language=CN, stringName=白雅伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Henan Province Highway Management Center of Toll and Loan, Zhengzhou 450000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110348941124420, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110349079536454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110348941124420, language=EN, stringName=Anand Sreeram, firstName=Anand, middleName=null, lastName=Sreeram, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110349176005447, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110348941124420, language=CN, stringName=Anand Sreeram, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166110349280863049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166110349419275083, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110349280863049, language=EN, stringName=Jing Hu, firstName=Jing, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Key Laboratory of Road and Traffic Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166110349519938380, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159889981055492160, authorId=1166110349280863049, language=CN, stringName=胡静, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Key Laboratory of Road and Traffic Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xiong Xu , Zhen Leng , Jingting Lan , Wei Wang , Jiangmiao Yu , Yawei Bai , Anand Sreeram , Jing Hu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Large-Scale Membrane Bioreactors for Industrial Wastewater Treatment in China: Technical and Economic Features, Driving Forces, and Perspectives
    [Author(id=1166109765114979080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109765270168331, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109765114979080, language=EN, stringName=Jiao Zhang, firstName=Jiao, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    d Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109765370831628, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109765114979080, language=CN, stringName=张姣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    d Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109765458912014, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109765614101265, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109765458912014, language=EN, stringName=Kang Xiao, firstName=Kang, middleName=null, lastName=Xiao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    d Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109765710570258, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109765458912014, language=CN, stringName=肖康, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    d Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109765802844948, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109765924479766, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109765802844948, language=EN, stringName=Ziwei Liu, firstName=Ziwei, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109766020948759, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109765802844948, language=CN, stringName=刘紫微, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109766113223449, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109766239052571, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109766113223449, language=EN, stringName=Tingwei Gao, firstName=Tingwei, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109766331327260, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109766113223449, language=CN, stringName=高庭苇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109766427796254, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109766582985505, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109766427796254, language=EN, stringName=Shuai Liang, firstName=Shuai, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
    d Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109766675260194, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109766427796254, language=CN, stringName=梁帅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
    d Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109766771729188, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109766922724135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109766771729188, language=EN, stringName=Xia Huang, firstName=Xia, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    d Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109767014998824, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159888850283717360, authorId=1166109766771729188, language=CN, stringName=黄霞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    d Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jiao Zhang , Kang Xiao , Ziwei Liu , Tingwei Gao , Shuai Liang , Xia Huang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Multi-View Point-Based Registration for Native Knee Kinematics Measurement with Feature Transfer Learning
    [Author(id=1166109317595325003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109317784068687, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109317595325003, language=EN, stringName=Cong Wang, firstName=Cong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Shanghai Key Laboratory of Orthopaedic Implants & Clinical Translational R&D Center of 3D Printing Technology, Department of Orthopaedic Surgery, Shanghai Ninth People’s
    b SenseTime Research, Shanghai 200233, China
    c Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai 200030, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109317880537680, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109317595325003, language=CN, stringName=王聪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Shanghai Key Laboratory of Orthopaedic Implants & Clinical Translational R&D Center of 3D Printing Technology, Department of Orthopaedic Surgery, Shanghai Ninth People’s
    b SenseTime Research, Shanghai 200233, China
    c Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai 200030, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109317977006674, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109318102835796, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109317977006674, language=EN, stringName=Shuaining Xie , Kang Li, firstName=Shuaining, middleName=null, lastName=Xie , Kang Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b SenseTime Research, Shanghai 200233, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109318199304789, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109317977006674, language=CN, stringName=谢帅宁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b SenseTime Research, Shanghai 200233, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109318295773783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109318421602905, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109318295773783, language=EN, stringName=Chongyang Wang, firstName=Chongyang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Orthopaedics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109318518071898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109318295773783, language=CN, stringName=李康, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Department of Orthopaedics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109318610346588, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109318736175710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109318610346588, language=EN, stringName=Xudong Liu, firstName=Xudong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109318836839007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109318610346588, language=CN, stringName=王重阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109318929113697, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109319059137123, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109318929113697, language=EN, stringName=Liang Zhao, firstName=Liang, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109319155606116, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109318929113697, language=CN, stringName=刘旭东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109319252075110, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109319382098536, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109319252075110, language=EN, stringName=Tsung-Yuan Tsai, firstName=Tsung-Yuan, middleName=null, lastName=Tsai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b SenseTime Research, Shanghai 200233, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109319474373225, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109319252075110, language=CN, stringName=赵亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b SenseTime Research, Shanghai 200233, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109319575036523, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166109319772168815, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887902584922543, authorId=1166109319575036523, language=CN, stringName=蔡宗远, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Shanghai Key Laboratory of Orthopaedic Implants & Clinical Translational R&D Center of 3D Printing Technology, Department of Orthopaedic Surgery, Shanghai Ninth People’s
    b SenseTime Research, Shanghai 200233, China
    c Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai 200030, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Cong Wang , Shuaining Xie , Kang Li , Chongyang Wang , Xudong Liu , Liang Zhao , Tsung-Yuan Tsai

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.