2021-05-31 , Volume 7 Issue 5

Cover illustration

  •  

    Eco-friendly materials have attracted extensive research interests in optoelectronics, including field-effect transistors, light-emitting diodes, photovoltaics, and sensors, just as renewable energy tries to replace conventional fossil fuel-based materials due to the sustainability and biodegradable properties. Now, the integration of sustainable materials with electronics not only improves the economic benefits of the wasted natural resources but also conserves the environment. The review covers the sustainable materials derived from nature, applied to passive and active components of organic optoelectronic devices, such as substrates, insulators, semiconductors, and conductors. We hope this will stimulate much interest in potential and practical applications for a green and sustainable industry.

    Download cover

  • Select all
    Editorial
  • Editorial for the Special Issue on Soft Matter for Green Chemical Engineering
    [Author(id=1166107925451300973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886556502745622, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107925581324399, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886556502745622, authorId=1166107925451300973, language=EN, stringName=David A. Weitz, firstName=David A., middleName=null, lastName=Weitz, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences & Department of Physics, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107925681987696, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886556502745622, authorId=1166107925451300973, language=CN, stringName=David A. Weitz, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences & Department of Physics, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166107925782650994, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886556502745622, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107925946228852, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886556502745622, authorId=1166107925782650994, language=EN, stringName=Jian-Feng Chen, firstName=Jian-Feng, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107926038503541, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886556502745622, authorId=1166107925782650994, language=CN, stringName=陈建峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] David A. Weitz , Jian-Feng Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • China's Latest Moon Mission Returns New Lunar Rocks
    [Author(id=1166107125647860571, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885390922441034, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107125769495389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885390922441034, authorId=1166107125647860571, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107125861770078, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885390922441034, authorId=1166107125647860571, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Advanced Devices Ease Burden of Glucose Monitoring for Diabetics
    [Author(id=1166107116906930935, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885373415416106, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107117032760058, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885373415416106, authorId=1166107116906930935, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107117129229052, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885373415416106, authorId=1166107116906930935, language=CN, stringName=Chris Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Pushing Mathematical Limits, a Neural Network Learns Fluid Flow
    [Author(id=1166107769876177531, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885372140347687, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107769993618045, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885372140347687, authorId=1166107769876177531, language=EN, stringName=Dana Mackenzie, firstName=Dana, middleName=null, lastName=Mackenzie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107770077504126, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159885372140347687, authorId=1166107769876177531, language=CN, stringName=Dana Mackenzie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Dana Mackenzie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • A Focus on Interfaces
    [Author(id=1166107966295433368, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886577918861858, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107966421262490, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886577918861858, authorId=1166107966295433368, language=EN, stringName=Ping Sheng, firstName=Ping, middleName=null, lastName=Sheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107966513537179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886577918861858, authorId=1166107966295433368, language=CN, stringName=沈平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ping Sheng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Implications of the EU’s Inclusion of Maritime Transport in the Emissions Trading System for Shipping Companies
    [Author(id=1166108515224970189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108515380159439, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, authorId=1166108515224970189, language=EN, stringName=Shuaian Wang, firstName=Shuaian, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108515493405648, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, authorId=1166108515224970189, language=CN, stringName=王帅安, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108515610846162, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108515770229716, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, authorId=1166108515610846162, language=EN, stringName=Lu Zhen, firstName=Lu, middleName=null, lastName=Zhen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Management, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108515887670229, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, authorId=1166108515610846162, language=CN, stringName=镇璐, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Management, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108516005110743, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108516160299993, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, authorId=1166108516005110743, language=EN, stringName=Harilaos N. Psaraftis, firstName=Harilaos N., middleName=null, lastName=Psaraftis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Management Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108516281934810, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, authorId=1166108516005110743, language=CN, stringName=Harilaos N. Psaraftis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Management Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108516407763932, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108516562953182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, authorId=1166108516407763932, language=EN, stringName=Ran Yan, firstName=Ran, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108516680393695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887103012167975, authorId=1166108516407763932, language=CN, stringName=鄢然, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shuaian Wang , Lu Zhen , Harilaos N. Psaraftis , Ran Yan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Engineering Achievements
  • Engineering Innovation and the Development of the BDS-3 Navigation Constellation
    [Author(id=1166108564197662787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887160927117784, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108564357046341, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887160927117784, authorId=1166108564197662787, language=EN, stringName=Jun Xie, firstName=Jun, middleName=null, lastName=Xie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Academy of Space Technology, Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108564474486854, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887160927117784, authorId=1166108564197662787, language=CN, stringName=谢军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Academy of Space Technology, Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108564591927368, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887160927117784, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108564747116618, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887160927117784, authorId=1166108564591927368, language=EN, stringName=Chengbin Kang, firstName=Chengbin, middleName=null, lastName=Kang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Academy of Space Technology, Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108564868751435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887160927117784, authorId=1166108564591927368, language=CN, stringName=康成斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Academy of Space Technology, Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jun Xie , Chengbin Kang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Review
    Advances in Soft Materials for Sustainable Electronics
    [Author(id=1166108825972564018, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887170066506264, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108826119364660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887170066506264, authorId=1166108825972564018, language=EN, stringName=Moon Jong Han, firstName=Moon Jong, middleName=null, lastName=Han, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108826228416565, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887170066506264, authorId=1166108825972564018, language=CN, stringName=Moon Jong Han, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108826341662775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887170066506264, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108826568155195, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887170066506264, authorId=1166108826341662775, language=EN, stringName=Dong Ki Yoon, firstName=Dong Ki, middleName=null, lastName=Yoon, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
    b Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
    c KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108826677207100, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887170066506264, authorId=1166108826341662775, language=CN, stringName=Dong Ki Yoon, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
    b Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
    c KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Moon Jong Han , Dong Ki Yoon

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Ionic Elastomers for Electric Actuators and Sensors
    [Author(id=1166108202476691654, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166108202631880905, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, authorId=1166108202476691654, language=EN, stringName=Chenrun Feng, firstName=Chenrun, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
    b Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108202728349898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, authorId=1166108202476691654, language=CN, stringName=Chenrun Feng, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
    b Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108202824818892, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166108202950648014, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, authorId=1166108202824818892, language=EN, stringName=C.P. Hemantha Rajapaksha, firstName=C.P. Hemantha, middleName=null, lastName=Rajapaksha, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, *, address=c Department of Physics, Kent State University, Kent, OH 44242, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108203042922703, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, authorId=1166108202824818892, language=CN, stringName=C.P. Hemantha Rajapaksha, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, *, address=c Department of Physics, Kent State University, Kent, OH 44242, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108203135197393, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108203319746773, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, authorId=1166108203135197393, language=EN, stringName=Antal Jákli, firstName=Antal, middleName=null, lastName=Jákli, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
    b Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
    c Department of Physics, Kent State University, Kent, OH 44242, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108203416215766, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886760748573004, authorId=1166108203135197393, language=CN, stringName=Antal Jákli, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
    b Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
    c Department of Physics, Kent State University, Kent, OH 44242, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Chenrun Feng , C.P. Hemantha Rajapaksha , Antal Jákli

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Host–Guest Molecular Recognition at Liquid–Liquid Interfaces
    [Author(id=1166108412644876532, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108412770705654, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108412644876532, language=EN, stringName=Beibei Wang, firstName=Beibei, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108412867174647, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108412644876532, language=CN, stringName=王贝贝, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108412963643641, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108413089472763, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108412963643641, language=EN, stringName=Hao Chen, firstName=Hao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108413185941756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108412963643641, language=CN, stringName=陈浩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108413286605054, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108413412434176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108413286605054, language=EN, stringName=Tan Liu, firstName=Tan, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108413508903169, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108413286605054, language=CN, stringName=刘倓, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108413601177859, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108413722812677, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108413601177859, language=EN, stringName=Shaowei Shi, firstName=Shaowei, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108413819281670, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108413601177859, language=CN, stringName=史少伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108413911556360, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108414066745611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108413911556360, language=EN, stringName=Thomas P. Russell, firstName=Thomas, middleName=null, lastName=P. Russell, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
    c Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108414163214604, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887194364109405, authorId=1166108413911556360, language=CN, stringName=Thomas P. Russell, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
    c Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Beibei Wang , Hao Chen , Tan Liu , Shaowei Shi , Thomas P. Russell

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Mechanically Strong Proteinaceous Fibers: Engineered Fabrication by Microfluidics
    [Author(id=1166108006795633082, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108006921462205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, authorId=1166108006795633082, language=EN, stringName=Jing Sun, firstName=Jing, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Organic Chemistry, University of Ulm, Ulm 89081, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108007017931199, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, authorId=1166108006795633082, language=CN, stringName=孙静, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Organic Chemistry, University of Ulm, Ulm 89081, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108007110205890, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108007236035013, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, authorId=1166108007110205890, language=EN, stringName=Jingsi Chen, firstName=Jingsi, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108007336698311, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, authorId=1166108007110205890, language=CN, stringName=陈静思, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108007433167306, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108007592550863, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, authorId=1166108007433167306, language=EN, stringName=Kai Liu, firstName=Kai, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c Department of Chemistry, Tsinghua University, Beijing 100084, China
    d State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108007689019857, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, authorId=1166108007433167306, language=CN, stringName=刘凯, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c Department of Chemistry, Tsinghua University, Beijing 100084, China
    d State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108007785488852, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108007919706583, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, authorId=1166108007785488852, language=EN, stringName=Hongbo Zeng, firstName=Hongbo, middleName=null, lastName=Zeng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108008011981273, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886625612292710, authorId=1166108007785488852, language=CN, stringName=曾洪波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jing Sun , Jingsi Chen , Kai Liu , Hongbo Zeng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Letter
    Degradable Plastics Are Vulnerable to Cracks
    [Author(id=1166108326443541445, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108326636479434, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108326443541445, language=EN, stringName=Xuxu Yang, firstName=Xuxu, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
    b State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics & Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108326745531342, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108326443541445, language=CN, stringName=杨栩旭, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
    b State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics & Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108326854583250, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108327001383895, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108326854583250, language=EN, stringName=Jason Steck, firstName=Jason, middleName=null, lastName=Steck, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108327110435802, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108326854583250, language=CN, stringName=Jason Steck, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108327219487710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108327370482660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108327219487710, language=EN, stringName=Jiawei Yang, firstName=Jiawei, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108327479534565, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108327219487710, language=CN, stringName=杨加伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108327588586473, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108327735387117, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108327588586473, language=EN, stringName=Yecheng Wang, firstName=Yecheng, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108327848633328, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108327588586473, language=CN, stringName=王叶成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108327961879539, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108328108680182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108327961879539, language=EN, stringName=Zhigang Suo, firstName=Zhigang, middleName=null, lastName=Suo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108328213537784, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887093755339041, authorId=1166108327961879539, language=CN, stringName=锁志刚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xuxu Yang , Jason Steck , Jiawei Yang , Yecheng Wang , Zhigang Suo

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Letter
    Nanobubble Dynamics in Aqueous Surfactant Solutions Studied by Liquid-Phase Transmission Electron Microscopy
    [Author(id=1166108505041199943, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108505192194893, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108505041199943, language=EN, stringName=Yuna Bae, firstName=Yuna, middleName=null, lastName=Bae, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108505292858191, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108505041199943, language=CN, stringName=Yuna Bae, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108505385132883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108505540322137, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108505385132883, language=EN, stringName=Sungsu Kang, firstName=Sungsu, middleName=null, lastName=Kang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108505649374044, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108505385132883, language=CN, stringName=Sungsu Kang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108505745843040, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108505938781031, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108505745843040, language=EN, stringName=Byung Hyo Kim, firstName=Byung, middleName=null, lastName=Hyo Kim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
    d Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108506039444329, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108505745843040, language=CN, stringName=Byung Hyo Kim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
    d Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108506165273452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108506312074096, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108506165273452, language=EN, stringName=Kitaek Lim, firstName=Kitaek, middleName=null, lastName=Lim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108506421126002, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108506165273452, language=CN, stringName=Kitaek Lim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108506534372213, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108506685367160, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108506534372213, language=EN, stringName=Sungho Jeon, firstName=Sungho, middleName=null, lastName=Jeon, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108506786030458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108506534372213, language=CN, stringName=Sungho Jeon, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108506878305149, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108507004134273, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108506878305149, language=EN, stringName=Sangdeok Shim, firstName=Sangdeok, middleName=null, lastName=Shim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108507096408963, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108506878305149, language=CN, stringName=Sangdeok Shim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108507192877957, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108507314512775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108507192877957, language=EN, stringName=Won Chul Lee, firstName=Won Chul, middleName=null, lastName=Lee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108507410981768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108507192877957, language=CN, stringName=Won Chul Lee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108507507450762, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108507662640013, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108507507450762, language=EN, stringName=Jungwon Park, firstName=Jungwon, middleName=null, lastName=Park, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108507754914702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887080270651674, authorId=1166108507507450762, language=CN, stringName=Jungwon Park, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
    b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yuna Bae , Sungsu Kang , Byung Hyo Kim , Kitaek Lim , Sungho Jeon , Sangdeok Shim , Won Chul Lee , Jungwon Park

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Functional Capsules Encapsulating Molecular-Recognizable Nanogels for Facile Removal of Organic Micro-Pollutants from Water
    [Author(id=1166108641184112929, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108641339302179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108641184112929, language=EN, stringName=Wen-Ying Liu, firstName=Wen-Ying, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108641456742692, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108641184112929, language=CN, stringName=刘文英, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108641578377510, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108641775509801, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108641578377510, language=EN, stringName=Xiao-Jie Ju, firstName=Xiao-Jie, middleName=null, lastName=Ju, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108641892950314, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108641578377510, language=CN, stringName=巨晓洁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108642010390828, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108642165580078, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108642010390828, language=EN, stringName=Xing-Qun Pu, firstName=Xing-Qun, middleName=null, lastName=Pu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108642283020591, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108642010390828, language=CN, stringName=蒲兴群, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108642400461105, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108642559844659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108642400461105, language=EN, stringName=Quan-Wei Cai, firstName=Quan-Wei, middleName=null, lastName=Cai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108642677285172, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108642400461105, language=CN, stringName=蔡泉威, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108642794725686, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108642949914936, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108642794725686, language=EN, stringName=Yu-Qiong Liu, firstName=Yu-Qiong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108643058966841, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108642794725686, language=CN, stringName=刘玉琼, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108643155435835, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108643306430782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108643155435835, language=EN, stringName=Zhuang Liu, firstName=Zhuang, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108643398705471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108643155435835, language=CN, stringName=刘壮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108643490980161, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108643646169412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108643490980161, language=EN, stringName=Wei Wang, firstName=Wei, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108643738444101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108643490980161, language=CN, stringName=汪伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108643834913095, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108643985908042, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108643834913095, language=EN, stringName=Rui Xie, firstName=Rui, middleName=null, lastName=Xie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108644078182731, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108643834913095, language=CN, stringName=谢锐, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
    b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108644170457421, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108644292092239, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108644170457421, language=EN, stringName=Liang-Yin Chu, firstName=Liang-Yin, middleName=null, lastName=Chu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108644388561232, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887265772135328, authorId=1166108644170457421, language=CN, stringName=褚良银, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wen-Ying Liu , Xiao-Jie Ju , Xing-Qun Pu , Quan-Wei Cai , Yu-Qiong Liu , Zhuang Liu , Wei Wang , Rui Xie , Liang-Yin Chu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Engineering the Thermoelectrical Properties of PEDOT:PSS by Alkali Metal Ion Effect
    [Author(id=1166107893641700351, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107893771722752, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107893641700351, language=EN, stringName=Jingjin Dong, firstName=Jingjin, middleName=null, lastName=Dong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107893863997441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107893641700351, language=CN, stringName=Jingjin Dong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166107893964660739, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107894090489861, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107893964660739, language=EN, stringName=Jian Liu, firstName=Jian, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107894182764550, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107893964660739, language=CN, stringName=Jian Liu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166107894283427848, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107894438617099, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107894283427848, language=EN, stringName=Xinkai Qiu, firstName=Xinkai, middleName=null, lastName=Qiu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
    b Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107894530891788, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107894283427848, language=CN, stringName=Xinkai Qiu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
    b Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166107894627360782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107894782550033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107894627360782, language=EN, stringName=Ryan Chiechi, firstName=Ryan, middleName=null, lastName=Chiechi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
    b Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107894874824722, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107894627360782, language=CN, stringName=Ryan Chiechi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
    b Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166107894975488020, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107895101317142, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107894975488020, language=EN, stringName=L. Jan Anton Koster, firstName=L., middleName=null, lastName=Jan Anton Koster, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107895197786135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107894975488020, language=CN, stringName=L. Jan Anton Koster, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166107895290060825, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166107895415889947, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107895290060825, language=EN, stringName=Giuseppe Portale, firstName=Giuseppe, middleName=null, lastName=Portale, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166107895533330460, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886690246517590, authorId=1166107895290060825, language=CN, stringName=Giuseppe Portale
    , firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jingjin Dong , Jian Liu , Xinkai Qiu , Ryan Chiechi , L. Jan Anton Koster , Giuseppe Portale

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    A Versatile Flow-Profile Engineering Method in the Stokes Flow Regime for Complex-Shaped Flows
    [Author(id=1166108325290107814, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108325420131240, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, authorId=1166108325290107814, language=EN, stringName=Zhenyu Yang, firstName=Zhenyu, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108325512405929, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, authorId=1166108325290107814, language=CN, stringName=杨振宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108325608874924, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108325730509743, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, authorId=1166108325608874924, language=EN, stringName=Lang Nan, firstName=Lang, middleName=null, lastName=Nan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108325826978737, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, authorId=1166108325608874924, language=CN, stringName=南浪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108325923447731, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108326045082550, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, authorId=1166108325923447731, language=EN, stringName=Ho Cheung Shum, firstName=Ho Cheung, middleName=null, lastName=Shum, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108326145745849, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887101661602086, authorId=1166108325923447731, language=CN, stringName=岑浩璋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Zhenyu Yang , Lang Nan , Ho Cheung Shum

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    A Review of the Design and Architecture of Starch-Based Dietary Foods
    [Author(id=1166108022390055505, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108022578799189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108022390055505, language=EN, stringName=Yuxiang Bai, firstName=Yuxiang, middleName=null, lastName=Bai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    c Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108022671073878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108022390055505, language=CN, stringName=柏玉香, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    c Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108022767542872, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108022926926427, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108022767542872, language=EN, stringName=XiaoXiao Li, firstName=XiaoXiao, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108023019201116, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108022767542872, language=CN, stringName=李晓晓, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108023115670110, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108023275053665, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108023115670110, language=EN, stringName=Hangyan Ji, firstName=Hangyan, middleName=null, lastName=Ji, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108023371522658, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108023115670110, language=CN, stringName=纪杭燕, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108023467991652, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108023639958119, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108023467991652, language=EN, stringName=Yu Wang, firstName=Yu, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108023757398632, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108023467991652, language=CN, stringName=王禹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108023853867626, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108024013251181, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108023853867626, language=EN, stringName=Danni Zheng, firstName=Danni, middleName=null, lastName=Zheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108024122303086, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108023853867626, language=CN, stringName=郑丹妮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108024214577776, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108024373961331, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108024214577776, language=EN, stringName=Yanli Wang, firstName=Yanli, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108024470430324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108024214577776, language=CN, stringName=王艳丽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108024566899318, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108024759837306, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108024566899318, language=EN, stringName=Zhengyu Jin, firstName=Zhengyu, middleName=null, lastName=Jin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    c Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108024860500603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886633669550704, authorId=1166108024566899318, language=CN, stringName=金征宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
    c Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yuxiang Bai , XiaoXiao Li , Hangyan Ji , Yu Wang , Danni Zheng , Yanli Wang , Zhengyu Jin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Processing, Quality, Safety, and Acceptance of Meat Analogue Products
    [Author(id=1166108316578538308, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108316729533254, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108316578538308, language=EN, stringName=Cuixia Sun, firstName=Cuixia, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108316867945287, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108316578538308, language=CN, stringName=孙翠霞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108317010551625, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108317161546572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108317010551625, language=EN, stringName=Jiao Ge, firstName=Jiao, middleName=null, lastName=Ge, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108317270598477, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108317010551625, language=CN, stringName=葛姣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108317425787728, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108317572588370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108317425787728, language=EN, stringName=Jun He, firstName=Jun, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108317690028883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108317425787728, language=CN, stringName=何君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108317799080789, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108317945881431, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108317799080789, language=EN, stringName=Renyou Gan, firstName=Renyou, middleName=null, lastName=Gan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108318038156120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108317799080789, language=CN, stringName=甘人友, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108318134625115, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108318285620061, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108318134625115, language=EN, stringName=Yapeng Fang, firstName=Yapeng, middleName=null, lastName=Fang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108318398866270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159886576958366241, authorId=1166108318134625115, language=CN, stringName=方亚鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Cuixia Sun , Jiao Ge , Jun He , Renyou Gan , Yapeng Fang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    An Update on the Efficacy and Functionality of Probiotics for the Treatment of Non-Alcoholic Fatty Liver Disease
    [Author(id=1166108493653664373, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166108493775299192, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108493653664373, language=EN, stringName=Mingfei Yao, firstName=Mingfei, middleName=null, lastName=Yao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108493871768186, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108493653664373, language=CN, stringName=姚铭飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108493959848573, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166108494081483392, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108493959848573, language=EN, stringName=Lingling Qv, firstName=Lingling, middleName=null, lastName=Qv, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108494182146690, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108493959848573, language=CN, stringName=屈玲玲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108494295392901, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108494454776457, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108494295392901, language=EN, stringName=Yanmeng Lu, firstName=Yanmeng, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108494559634060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108494295392901, language=CN, stringName=陆艳蒙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108494651908752, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108494781932179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108494651908752, language=EN, stringName=Baohong Wang, firstName=Baohong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108494874206868, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108494651908752, language=CN, stringName=王保红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108494970675862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108495125865113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108494970675862, language=EN, stringName=Björn Berglund, firstName=Björn, middleName=null, lastName=Berglund, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
    b Department of Clinical and Experimental Medicine, Linköping University, Linköping SE 581 83, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108495218139802, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108494970675862, language=CN, stringName=Björn Berglund, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
    b Department of Clinical and Experimental Medicine, Linköping University, Linköping SE 581 83, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166108495314608796, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166108495436243614, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108495314608796, language=EN, stringName=Lanjuan Li, firstName=Lanjuan, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166108495528518304, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887068941836563, authorId=1166108495314608796, language=CN, stringName=李兰娟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Mingfei Yao , Lingling Qv , Yanmeng Lu , Baohong Wang , Björn Berglund , Lanjuan Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Fault-Induced Coal Burst Mechanism under Mining-Induced Static and Dynamic Stresses
    [Author(id=1166109077282677677, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109077475615664, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, authorId=1166109077282677677, language=EN, stringName=Wu Cai, firstName=Wu, middleName=null, lastName=Cai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    b Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109077593056177, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, authorId=1166109077282677677, language=CN, stringName=蔡武, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    b Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109077702108083, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109077827937205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, authorId=1166109077702108083, language=EN, stringName=Linming Dou, firstName=Linming, middleName=null, lastName=Dou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109077916017590, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, authorId=1166109077702108083, language=CN, stringName=窦林名, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109078020875192, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109078176064442, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, authorId=1166109078020875192, language=EN, stringName=Guangyao Si, firstName=Guangyao, middleName=null, lastName=Si, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney NSW 2052, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109078289310651, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, authorId=1166109078020875192, language=CN, stringName=司光耀, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney NSW 2052, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166109078406751165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166109078561940415, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, authorId=1166109078406751165, language=EN, stringName=Yawei Hu, firstName=Yawei, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166109078679380929, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159887426640470821, authorId=1166109078406751165, language=CN, stringName=胡亚伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wu Cai , Linming Dou , Guangyao Si , Yawei Hu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Corrigendum
    Corrigendum to ‘‘Structural and Kinetics Understanding of Support Effects in Pd-Catalyzed Semi-Hydrogenation of Acetylene” [Engineering 7 (2021) 103–110]
    []

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.