2022-04-29 , Volume 11 Issue 4

Cover illustration

  •  

    The significant development of high frequency antennas over the past few decades has supported the tremendous growth of wireless communications and sensing connectivity. This figure provides a highlight of those wideband compact antennas designed for mobile communications, satellite communications, remote sensing, vehicular technology and wireless power transfer. The inverted-F antenna is popularly used in smart phones. The stacked-patch antenna, U-slotted patch antenna and L-probe fed patch antenna represent major bandwidth enhancement techniques for microstrip patch antennas. The dielectric resonator antenna is high in radiation efficiency at millimeter-wave and terahertz frequencies. The magneto-electric dipoles are versatile in applications due to their excellent characteristics of simple structure, wide bandwidth, high radiation efficiency, low cross polarization, low back radiation, symmetrical radiation patterns, and stable gain over the operating frequencies. Unlike conventional dipoles, horns or reflector antennas that are purely made of metallic materials, all these modern antennas can be fabricated at low cost either by the traditional photolithography process or conventional 3D-printing techniques. Other important designs can be found in the excellent papers of this Special Issue.

    Download cover

  • Select all
    Editorial
  • Advanced Antennas Push Forward Wireless Connectivity
    [Author(id=1166095598073078503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873270201770340, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166095598207296234, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873270201770340, authorId=1166095598073078503, language=EN, stringName=Kwai Man Luk, firstName=Kwai Man, middleName=null, lastName=Luk, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Fellow of the Royal Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166095598337319659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873270201770340, authorId=1166095598073078503, language=CN, stringName=陆贵文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Fellow of the Royal Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166095598442177261, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873270201770340, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166095598576394991, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873270201770340, authorId=1166095598442177261, language=EN, stringName=Baoyan Duan, firstName=Baoyan, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Member of the Chinese Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166095598681252592, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873270201770340, authorId=1166095598442177261, language=CN, stringName=段宝岩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Member of the Chinese Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Kwai Man Luk , Baoyan Duan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • With Great Expectations, Webb Telescope Finally Lifts Off
    [Author(id=1166095294510325850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872943289328170, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166095294652932189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872943289328170, authorId=1166095294510325850, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166095294761984095, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872943289328170, authorId=1166095294510325850, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • COP26: Some progress, but nations still fiddling while world warms
    [Author(id=1166095284540466166, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873275553702285, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166095284699849722, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873275553702285, authorId=1166095284540466166, language=EN, stringName=Sean O'Neill, firstName=Sean, middleName=null, lastName=O'Neill, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166095284825678844, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873275553702285, authorId=1166095284540466166, language=CN, stringName=Sean O'Neill, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sean O'Neill

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Hydrogen-Powered Trains Start to Roll
    [Author(id=1166095290806755378, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873280586867091, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166095290957750324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873280586867091, authorId=1166095290806755378, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166095291070996533, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873280586867091, authorId=1166095290806755378, language=CN, stringName=Chris Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Overview of Future Antenna Design for Mobile Terminals
    [Author(id=1162120560660505073, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870765682188461, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120560807305725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870765682188461, authorId=1162120560660505073, language=EN, stringName=Hanyang Wang, firstName=Hanyang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=, address= Huawei Technologies (UK) Co., Ltd., Reading RG2 6UF, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hanyang Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    Compelling Challenges in Antenna Technologies for Future Medical Applications
    [Author(id=1166089495826326107, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866675937992880, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166089495943766621, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866675937992880, authorId=1166089495826326107, language=EN, stringName=Koichi Ito, firstName=Koichi, middleName=null, lastName=Ito, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166089496040235614, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866675937992880, authorId=1166089495826326107, language=CN, stringName=Koichi Ito, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Koichi Ito

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Antenna-in-Package (AiP) Technology
    [Author(id=1166089654291325782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159867119615664428, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166089654421349209, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159867119615664428, authorId=1166089654291325782, language=EN, stringName=Yueping Zhang, firstName=Yueping, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical and Electronic Engineering, Nangyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166089654513623899, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159867119615664428, authorId=1166089654291325782, language=CN, stringName=张跃平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electrical and Electronic Engineering, Nangyang Technological University, Singapore 639798, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yueping Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Prospects of Huygens’ Metasurfaces for Antenna Applications
    [Author(id=1166088211425583145, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088211555606573, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, authorId=1166088211425583145, language=EN, stringName=George V. Eleftheriades, firstName=George V., middleName=null, lastName=Eleftheriades, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088211647881264, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, authorId=1166088211425583145, language=CN, stringName=George V. Eleftheriades, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166088211744350260, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088211870179386, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, authorId=1166088211744350260, language=EN, stringName=Minseok Kim, firstName=Minseok, middleName=null, lastName=Kim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088211962454075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, authorId=1166088211744350260, language=CN, stringName=Minseok Kim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166088212067311678, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088212188946499, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, authorId=1166088212067311678, language=EN, stringName=Vasileios G. Ataloglou, firstName=Vasileios G., middleName=null, lastName=Ataloglou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088212281221189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, authorId=1166088212067311678, language=CN, stringName=Vasileios G. Ataloglou, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166088212377690184, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088212503519308, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, authorId=1166088212377690184, language=EN, stringName=Ayman H. Dorrah, firstName=Ayman H., middleName=null, lastName=Dorrah, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088212599988302, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159864933099824106, authorId=1166088212377690184, language=CN, stringName=Ayman H. Dorrah, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] George V. Eleftheriades , Minseok Kim , Vasileios G. Ataloglou , Ayman H. Dorrah

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Review
    Recent Advances in Organ Specific Wireless Bioelectronic Devices: Perspective on Biotelemetry and Power Transfer Using Antenna Systems
    [Author(id=1166094812802900953, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094812953895899, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, authorId=1166094812802900953, language=EN, stringName=Ahsan Noor Khan, firstName=Ahsan Noor, middleName=null, lastName=Khan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094813062947804, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, authorId=1166094812802900953, language=CN, stringName=Ahsan Noor Khan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094813171999710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094813318800352, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, authorId=1166094813171999710, language=EN, stringName=Young-ok Cha, firstName=Young-ok, middleName=null, lastName=Cha, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094813427852257, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, authorId=1166094813171999710, language=CN, stringName=Young-ok Cha, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094813536904163, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094813679510501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, authorId=1166094813536904163, language=EN, stringName=Henry Giddens, firstName=Henry, middleName=null, lastName=Giddens, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094813792756710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, authorId=1166094813536904163, language=CN, stringName=Henry Giddens, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094813901808616, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094814048609258, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, authorId=1166094813901808616, language=EN, stringName=Yang Hao, firstName=Yang, middleName=null, lastName=Hao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094814157661163, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872283697275580, authorId=1166094813901808616, language=CN, stringName=郝阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ahsan Noor Khan , Young-ok Cha , Henry Giddens , Yang Hao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    High Performance Electrically Small Huygens Rectennas Enable Wirelessly Powered Internet of Things Sensing Applications: A Review
    [Author(id=1166094189508354665, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871767709802519, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094189625795179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871767709802519, authorId=1166094189508354665, language=EN, stringName=Wei Lin, firstName=Wei, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Global Big Data Technologies Centre, School of Electrical and Data Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094189713875564, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871767709802519, authorId=1166094189508354665, language=CN, stringName=蔺炜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Global Big Data Technologies Centre, School of Electrical and Data Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094189801955950, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871767709802519, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094189923590768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871767709802519, authorId=1166094189801955950, language=EN, stringName=Richard W. Ziolkowski, firstName=Richard W., middleName=null, lastName=Ziolkowski, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Global Big Data Technologies Centre, School of Electrical and Data Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094190011671153, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871767709802519, authorId=1166094189801955950, language=CN, stringName=Richard W. Ziolkowski, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Global Big Data Technologies Centre, School of Electrical and Data Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wei Lin , Richard W. Ziolkowski

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Wide-Angle Scanning Antennas for Millimeter-Wave 5G Applications
    [Author(id=1166093585465664411, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093585620853662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, authorId=1166093585465664411, language=EN, stringName=Raj Mittra, firstName=Raj, middleName=null, lastName=Mittra, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
    b Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093585713128351, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, authorId=1166093585465664411, language=CN, stringName=Raj Mittra, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
    b Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093585809597345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093585935426467, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, authorId=1166093585809597345, language=EN, stringName=Abdelkhalek Nasri, firstName=Abdelkhalek, middleName=null, lastName=Nasri, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093586027701156, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, authorId=1166093585809597345, language=CN, stringName=Abdelkhalek Nasri, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093586124170150, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093586245804968, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, authorId=1166093586124170150, language=EN, stringName=Ravi Kumar Arya, firstName=Ravi Kumar, middleName=null, lastName=Arya, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Electronics & Communication Engineering, National Institute of Technology Delhi, Delhi 110040, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093586338079657, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871535341167425, authorId=1166093586124170150, language=CN, stringName=Ravi Kumar Arya, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Electronics & Communication Engineering, National Institute of Technology Delhi, Delhi 110040, India, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Raj Mittra , Abdelkhalek Nasri , Ravi Kumar Arya

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Omnidirectional Antenna Diversity System for High-Speed Onboard Communication
    [Author(id=1162120187023516103, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120187229037008, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, authorId=1162120187023516103, language=EN, stringName=Yongjian Zhang, firstName=Yongjian, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    b Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 10084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120187359060438, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120187568775646, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, authorId=1162120187359060438, language=EN, stringName=Yue Li, firstName=Yue, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    b Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 10084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120187694604771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120187900125675, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, authorId=1162120187694604771, language=EN, stringName=Weiquan Zhang, firstName=Weiquan, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    b Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 10084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120188021760494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120188202115572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, authorId=1162120188021760494, language=EN, stringName=Zhijun Zhang, firstName=Zhijun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    b Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 10084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120188315361785, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120188499911165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862434544541812, authorId=1162120188315361785, language=EN, stringName=Zhenghe Feng, firstName=Zhenghe, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    b Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 10084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yongjian Zhang , Yue Li , Weiquan Zhang , Zhijun Zhang , Zhenghe Feng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal-Organic Framework with Guest-Adaptive Pore Channels
    [Author(id=1166093293462414035, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093293575660246, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093293462414035, language=EN, stringName=Zhaoqiang Zhang, firstName=Zhaoqiang, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093293655352025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093293462414035, language=CN, stringName=张照强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093293739238108, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093293848290017, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093293739238108, language=EN, stringName=Xili Cui, firstName=Xili, middleName=null, lastName=Cui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093293932176099, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093293739238108, language=CN, stringName=崔希利, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093294011867877, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093294125114091, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093294011867877, language=EN, stringName=Xiao-Ming Jiang, firstName=Xiao-Ming, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093294209000172, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093294011867877, language=CN, stringName=姜小明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093294292886255, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093294401938164, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093294292886255, language=EN, stringName=Qi Ding, firstName=Qi, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093294485824246, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093294292886255, language=CN, stringName=丁琦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093294565516027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093294678762240, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093294565516027, language=EN, stringName=Jiyu Cui, firstName=Jiyu, middleName=null, lastName=Cui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093294762648322, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093294565516027, language=CN, stringName=崔稷宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093294846534406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093294959780619, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093294846534406, language=EN, stringName=Yuanbin Zhang, firstName=Yuanbin, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093295081415438, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093294846534406, language=CN, stringName=张袁斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093295177884434, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093295303713558, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093295177884434, language=EN, stringName=Youssef Belmabkhout, firstName=Youssef, middleName=null, lastName=Belmabkhout, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093295400182554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093295177884434, language=CN, stringName=Youssef Belmabkhout, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093295496651549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093295618286369, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093295496651549, language=EN, stringName=Karim Adil, firstName=Karim, middleName=null, lastName=Adil, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093295714755364, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093295496651549, language=CN, stringName=Karim Adil, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093295807030057, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093295932859181, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093295807030057, language=EN, stringName=Mohamed Eddaoudi, firstName=Mohamed, middleName=null, lastName=Eddaoudi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093296029328176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093295807030057, language=CN, stringName=Mohamed Eddaoudi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Advanced Membranes & Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093296121602868, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093296247431992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093296121602868, language=EN, stringName=Huabin Xing, firstName=Huabin, middleName=null, lastName=Xing, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093296339706682, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159870801757397190, authorId=1166093296121602868, language=CN, stringName=邢华斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Zhaoqiang Zhang , Xili Cui , Xiao-Ming Jiang , Qi Ding , Jiyu Cui , Yuanbin Zhang , Youssef Belmabkhout , Karim Adil , Mohamed Eddaoudi , Huabin Xing

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery
    [Author(id=1166094986723910504, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094986870711146, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094986723910504, language=EN, stringName=Wanyu Zhao, firstName=Wanyu, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094986988151659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094986723910504, language=CN, stringName=赵婉玉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094987097203565, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094987244004207, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094987097203565, language=EN, stringName=Min Guo, firstName=Min, middleName=null, lastName=Guo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094987357250416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094987097203565, language=CN, stringName=郭敏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094987470496626, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094987613102964, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094987470496626, language=EN, stringName=Zhijun Zuo, firstName=Zhijun, middleName=null, lastName=Zuo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094987726349173, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094987470496626, language=CN, stringName=左志军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094987839595383, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094987982201721, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094987839595383, language=EN, stringName=Xiaoli Zhao, firstName=Xiaoli, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094988087059322, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094987839595383, language=CN, stringName=赵晓莉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094988200305532, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094988342911870, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094988200305532, language=EN, stringName=Huanglin Dou, firstName=Huanglin, middleName=null, lastName=Dou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094988498101119, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094988200305532, language=CN, stringName=窦湟琳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094988615541633, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094988762342275, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094988615541633, language=EN, stringName=Yijie Zhang, firstName=Yijie, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094988875588484, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094988615541633, language=CN, stringName=张宜杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094988988834694, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094989135635336, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094988988834694, language=EN, stringName=Shiying Li, firstName=Shiying, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094989248881545, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094988988834694, language=CN, stringName=李时莹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094989362127755, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094989513122701, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094989362127755, language=EN, stringName=Zichen Wu, firstName=Zichen, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094989626368910, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094989362127755, language=CN, stringName=吴子辰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094989739615120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094990779802514, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094989739615120, language=EN, stringName=Yayun Shi, firstName=Yayun, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094990888854419, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094989739615120, language=CN, stringName=石雅雲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094991006294933, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094991153095575, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094991006294933, language=EN, stringName=Zi-Feng Ma, firstName=Zi-Feng, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094991266341784, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094991006294933, language=CN, stringName=马紫峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166094991383782298, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, orderNo=10, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166094991564137373, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094991383782298, language=EN, stringName=Xiaowei Yang, firstName=Xiaowei, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
    d Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166094991681577886, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159872966018261589, authorId=1166094991383782298, language=CN, stringName=杨晓伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, address=a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
    d Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wanyu Zhao , Min Guo , Zhijun Zuo , Xiaoli Zhao , Huanglin Dou , Yijie Zhang , Shiying Li , Zichen Wu , Yayun Shi , Zi-Feng Ma , Xiaowei Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Perspective
    Creating a Research Enterprise Framework for Transdisciplinary Networking to Address the Food–Energy–Water Nexus
    [Author(id=1166088963699171951, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088963875332723, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, authorId=1166088963699171951, language=EN, stringName=Jie Zhuang, firstName=Jie, middleName=null, lastName=Zhuang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
    b Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
    c Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088963963413108, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, authorId=1166088963699171951, language=CN, stringName=庄杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
    b Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
    c Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166088964059882102, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088964294763132, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, authorId=1166088964059882102, language=EN, stringName=Frank E. Löffler, firstName=Frank E., middleName=null, lastName=Löffler, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, e, f, address=a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
    b Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
    d Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
    e Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
    f Biosciences Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088964391232125, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, authorId=1166088964059882102, language=CN, stringName=Frank E. Löffler, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, e, f, address=a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
    b Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
    d Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
    e Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
    f Biosciences Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166088964479312511, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088964663861891, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, authorId=1166088964479312511, language=EN, stringName=Gary S. Sayler, firstName=Gary S., middleName=null, lastName=Sayler, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
    b Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
    d Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088964756136580, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159866105814639142, authorId=1166088964479312511, language=CN, stringName=Gary S. Sayler, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
    b Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
    d Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jie Zhuang , Frank E. Löffler , Gary S. Sayler

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Fabrication of a Hydrophobic Hierarchical Surface on Shale Using Modified Nano-SiO2 for Strengthening the Wellbore Wall in Drilling Engineering
    [Author(id=1166093943877329171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093944028324118, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093943877329171, language=EN, stringName=Xianbin Huang, firstName=Xianbin, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093944116404503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093943877329171, language=CN, stringName=黄贤斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093944208679193, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093944355479836, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093944208679193, language=EN, stringName=Jinsheng Sun, firstName=Jinsheng, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093944443560221, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093944208679193, language=CN, stringName=孙金声, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093944535834911, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093944682635554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093944535834911, language=EN, stringName=He Li, firstName=He, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093944770715939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093944535834911, language=CN, stringName=李贺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093944862990629, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093944976236839, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093944862990629, language=EN, stringName=Ren Wang, firstName=Ren, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c CNPC Engineering Technology R&D Co. Ltd., Beijing 102206, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093945068511528, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093944862990629, language=CN, stringName=王韧, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c CNPC Engineering Technology R&D Co. Ltd., Beijing 102206, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093945160786218, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093945303392557, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093945160786218, language=EN, stringName=Kaihe Lv, firstName=Kaihe, middleName=null, lastName=Lv, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093945395667246, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093945160786218, language=CN, stringName=吕开河, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166093945479553328, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166093945626353971, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093945479553328, language=EN, stringName=Haichao Li, firstName=Haichao, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166093945714434356, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159871427165872573, authorId=1166093945479553328, language=CN, stringName=李海潮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
    b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xianbin Huang , Jinsheng Sun , He Li , Ren Wang , Kaihe Lv , Haichao Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Emerging Organic Contaminants in Chinese Surface Water: Identification of Priority Pollutants
    [Author(id=1166085971709190227, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085971855990869, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085971709190227, language=EN, stringName=Mengmeng Zhong, firstName=Mengmeng, middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085971973431382, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085971709190227, language=CN, stringName=仲蒙蒙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085972082483288, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085972229283930, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085972082483288, language=EN, stringName=Tielong Wang, firstName=Tielong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085972342530139, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085972082483288, language=CN, stringName=王铁龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085972455776349, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085972606771295, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085972455776349, language=EN, stringName=Wenxing Zhao, firstName=Wenxing, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085972715823200, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085972455776349, language=CN, stringName=赵文星, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085972833263714, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085972984258660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085972833263714, language=EN, stringName=Jun Huang, firstName=Jun, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085973097504869, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085972833263714, language=CN, stringName=黄俊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085973219139687, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085973370134633, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085973219139687, language=EN, stringName=Bin Wang, firstName=Bin, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085973483380842, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085973219139687, language=CN, stringName=王斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085973596627052, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085973785370735, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085973596627052, language=EN, stringName=Lee Blaney, firstName=Lee, middleName=null, lastName=Blaney, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
    b Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085973898616944, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085973596627052, language=CN, stringName=Lee Blaney, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
    b Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085974011863154, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085974162858100, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085974011863154, language=EN, stringName=Qingwei Bu, firstName=Qingwei, middleName=null, lastName=Bu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085974276104309, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085974011863154, language=CN, stringName=卜庆伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085974393544823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085974544539769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085974393544823, language=EN, stringName=Gang Yu, firstName=Gang, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085974653591674, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862367897051989, authorId=1166085974393544823, language=CN, stringName=余刚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Mengmeng Zhong , Tielong Wang , Wenxing Zhao , Jun Huang , Bin Wang , Lee Blaney , Qingwei Bu , Gang Yu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Article
    Self-Powered Active Vibration Control: Concept, Modeling, and Testing
    [Author(id=1166088385568891561, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159865172112237440, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088385694720683, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159865172112237440, authorId=1166088385568891561, language=EN, stringName=Jin-Yang Li, firstName=Jin-Yang, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088385791189676, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159865172112237440, authorId=1166088385568891561, language=CN, stringName=李锦阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166088385883464366, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159865172112237440, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166088386009293488, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159865172112237440, authorId=1166088385883464366, language=EN, stringName=Songye Zhu, firstName=Songye, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166088386114151089, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159865172112237440, authorId=1166088385883464366, language=CN, stringName=朱松晔, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jin-Yang Li , Songye Zhu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Epidemiology and Mechanisms of Ceftazidime–Avibactam Resistance in Gram-Negative Bacteria
    [Author(id=1166085878012633471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085878180405633, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085878012633471, language=EN, stringName=Tingting Xu, firstName=Tingting, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital & 2nd Clinical Medical College of Jinan University & 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085878314623362, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085878012633471, language=CN, stringName=徐婷婷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital & 2nd Clinical Medical College of Jinan University & 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085878436258180, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085878604030342, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085878436258180, language=EN, stringName=Yuqi Guo, firstName=Yuqi, middleName=null, lastName=Guo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital & 2nd Clinical Medical College of Jinan University & 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085878729859463, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085878436258180, language=CN, stringName=郭育奇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital & 2nd Clinical Medical College of Jinan University & 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085878855688585, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085879027655051, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085878855688585, language=EN, stringName=Yang Ji, firstName=Yang, middleName=null, lastName=Ji, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital & 2nd Clinical Medical College of Jinan University & 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085879153484172, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085878855688585, language=CN, stringName=姬扬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital & 2nd Clinical Medical College of Jinan University & 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085879287701902, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085879455474064, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085879287701902, language=EN, stringName=Baohong Wang, firstName=Baohong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085879581303185, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085879287701902, language=CN, stringName=王保红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166085879707132308, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166085879870710167, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085879707132308, language=EN, stringName=Kai Zhou, firstName=Kai, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital & 2nd Clinical Medical College of Jinan University & 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166085880046870936, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862291241951873, authorId=1166085879707132308, language=CN, stringName=周凯, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital & 2nd Clinical Medical College of Jinan University & 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Tingting Xu , Yuqi Guo , Yang Ji , Baohong Wang , Kai Zhou

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Review
    Review of 4Pi Fluorescence Nanoscopy
    [Author(id=1166086087883023007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166086088046600866, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086087883023007, language=EN, stringName=Xiang Hao, firstName=Xiang, middleName=null, lastName=Hao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166086088164041381, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086087883023007, language=CN, stringName=郝翔, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166086088260510378, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166086088394728113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086088260510378, language=EN, stringName=Yiming Li, firstName=Yiming, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166086088520557236, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086088260510378, language=CN, stringName=李依明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166086088617026231, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166086088751243962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086088617026231, language=EN, stringName=Shuang Fu, firstName=Shuang, middleName=null, lastName=Fu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166086088851907260, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086088617026231, language=CN, stringName=傅爽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166086088948376254, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166086089082593985, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086088948376254, language=EN, stringName=Yanghui Li, firstName=Yanghui, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166086089179062979, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086088948376254, language=CN, stringName=李旸晖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166086089275531974, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166086089409749705, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086089275531974, language=EN, stringName=Yingke Xu, firstName=Yingke, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d MOE Key Laboratory for Biomedical Engineering & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166086089506218699, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086089275531974, language=CN, stringName=许迎科, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d MOE Key Laboratory for Biomedical Engineering & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166086089611076305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166086089753682646, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086089611076305, language=EN, stringName=Cuifang Kuang, firstName=Cuifang, middleName=null, lastName=Kuang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166086089862734555, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086089611076305, language=CN, stringName=匡翠方, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166086089967592158, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166086090118587108, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086089967592158, language=EN, stringName=Xu Liu, firstName=Xu, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166086090223444711, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159862306383389326, authorId=1166086089967592158, language=CN, stringName=刘旭, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiang Hao , Yiming Li , Shuang Fu , Yanghui Li , Yingke Xu , Cuifang Kuang , Xu Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • [Author(id=1162120670530298689, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120670698070857, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, authorId=1162120670530298689, language=EN, stringName=Yinao Su, firstName=Yinao, middleName=null, lastName=Su, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Energy and Mining Engineering Division of the Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120670828094284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120670991672142, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, authorId=1162120670828094284, language=EN, stringName=Houliang Dai, firstName=Houliang, middleName=null, lastName=Dai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120671121695568, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120671289467730, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, authorId=1162120671121695568, language=EN, stringName=Lichun Kuang, firstName=Lichun, middleName=null, lastName=Kuang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120671415296854, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120671583069020, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, authorId=1162120671415296854, language=EN, stringName=Jizhen Liu, firstName=Jizhen, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c North China Electric Power University, Beijing 102206, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120671708898147, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120671876670315, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, authorId=1162120671708898147, language=EN, stringName=Dazhao Gu, firstName=Dazhao, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d China Energy Investment Co., Ltd., Beijing 100011, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120672002499440, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120672170271606, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, authorId=1162120672002499440, language=EN, stringName=Caineng Zou, firstName=Caineng, middleName=null, lastName=Zou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1162120672296100731, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1162120672463872897, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159873256310235483, authorId=1162120672296100731, language=EN, stringName=Haixia Huang, firstName=Haixia, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China National Petroleum Corporation, Beijing 100007, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yinao Su , Houliang Dai , Lichun Kuang , Jizhen Liu , Dazhao Gu , Caineng Zou , Haixia Huang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.