The Current Situation of China’s Ophthalmology and Visual Science Bioengineering, and a Development Strategy

Lixin Xie, Qingjun Zhou, Haifeng Xu, Ping Lin

Strategic Study of CAE ›› 2017, Vol. 19 ›› Issue (2) : 100-105.

PDF(199 KB)
PDF(199 KB)
Strategic Study of CAE ›› 2017, Vol. 19 ›› Issue (2) : 100-105. DOI: 10.15302/J-SSCAE-2017.02.017
Study on Special Subjects

The Current Situation of China’s Ophthalmology and Visual Science Bioengineering, and a Development Strategy

Author information +
History +

Abstract

With the largest number of blind patient in the world, China is home to more than 12 million people who are blind. The most promising research direction in the bioengineering field for the treatment of blindness involves searching for bioengineering materials to restore visual function, particularly using stem cell and biochip technology. This paper introduces the development situation of China's bioengineering research in ophthalmology and visual science, and analyzes the main problems affecting current bioengineering research in corneal and retinal areas. We also present strategies and recommendations for research and development directions, the approval system, achievement translation, and the construction of a research platform, based on the current situation in China.

Keywords

ophthalmology and visual science / bioengineering / current situation / strategy

Cite this article

Download citation ▾
Lixin Xie, Qingjun Zhou, Haifeng Xu, Ping Lin. The Current Situation of China’s Ophthalmology and Visual Science Bioengineering, and a Development Strategy. Strategic Study of CAE, 2017, 19(2): 100‒105 https://doi.org/10.15302/J-SSCAE-2017.02.017

References

[1]
新华网. 国际盲人节: 我国每年新出现盲人大约45万人 [EB/OL]. (2006-10-16) [2016-10-25]. http://news.xinhuanet.com/health/2006-10/16/content_5207677.htm.
[2]
Song X, Xie L, Tan X, et al. A multi-center, cross-sectional study on the burden of infectious keratitis in China [J]. PLoS One, 2014, 9(12): e113843.
[3]
谢立信. 我国角膜手术的现状和发展策略 [J]. 中华眼科杂志, 2005, 41(8): 702–704.
[4]
周庆军, 谢立信. 组织工程角膜的基础研究和临床应用现状 [J]. 中华细胞与干细胞杂志, 2014, 4(1): 1–4.
[5]
Griffith M, Osborne R, Munger R, et al. Functional human corneal equivalents constructed from cell lines [J]. Science, 1999, 286(5447): 2169–2172.
[6]
Pellegrini G, Traverso C E, Franzi A T, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium [J]. Lancet, 1997, 349(9057): 990–993.
[7]
Tsai R J, Li L, Chen J. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells [J]. New England Journal of Medicine, 2000, 343(2): 86–93.
[8]
Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium [J]. New England Journal of Medicine, 2004, 351(12): 1187–1196.
[9]
Kaghad M. Limbal stem-cell therapy and long-term corneal regeneration [J]. New England Journal of Medicine, 2010, 363(2): 147–155.
[10]
Ouyang H, Xue Y, Lin Y, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis [J]. Nature, 2014, 511(7509): 358–361.
[11]
Zhang M C, Liu X, Jin Y, et al. Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma [J]. American Journal of Transplantation, 2015, 15(4): 1068–1075.
[12]
Fagerholm P, Lagali1 N S, Merrett K, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study [J]. Science Translational Medicine, 2010, 2(46): 46–61.
[13]
Dobelle W H. Artificial vision for the blind by connecting a television camera to the visual cortex [J]. ASAIO Journal, 2000, 46(1): 3–9.
[14]
Troyk P R, Bradley D, Bak M, et al. Intracortical visual prosthesis research–approach and progress [J]. IEEE Engineering in Medicine & Biology Conference, 2005(7): 7376–7379.
[15]
Veraart C, Raftopoulos C, Mortimer J T, et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode [J]. Brain Research, 1998, 813(1): 181–186.
[16]
Humayun M S, Cruz L D, Dagnelie G. Interim performance results from the second sight® Argus™ II retinal prosthesis study [R]. ARVO, 2011.
[17]
Duret F, Brelén M E, Lambert V, et al. Object localization, discrimination, and grasping with the optic nerve visual prosthesis [J]. Restorative Neurology & Neuroscience, 2006, 24(1): 31–40.
[18]
Sakaguchi H, Kamei M, Fujikado T, et al. Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa [J]. Journal of Artificial Organs, 2009, 12(3): 206–209.
[19]
任秋实.视觉假体的研究进展与面临的挑战 [J]. 生命科学 , 2009(21): 234–240.
[20]
Yanm D, Weiland J D, Mahadevappa M, et al. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa [J]. American Journal of Ophthalmology, 2007, 143(5): 820–827.
[21]
Behrend M R, Ahuja A K, Humayun M S, et al. Resolution of the epiretinal prosthesis is not limited by electrode size [J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2011, 19(4): 436–442.
[22]
Nanduri D, Fine I, Horsager A, et al. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation [J]. Investigative Ophthalmology & Visual Science, 2012, 53(1): 205–214.
[23]
Ahuja A K, Dorn J D, Caspi A, et al. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performarice in a spatial-motor task [J]. British Journal of Ophthalmology, 2011, 105中国工程科学 2017 年 第 19 卷 第 2 期95(4): 539–543.
[24]
Mathieson K, Loudin J, Goetz G, et al. Photovoltale retinal prosthesis with high pixel density [J]. Nature Photonics, 2012, 6(6): 391–397.
[25]
Grogg M W, Call M K, Okamoto M, et al. BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration [J]. Nature, 2005, 438(7069): 858–862.
[26]
Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function [J]. Nature, 2016, 531(7594): 323–328.
AI Summary AI Mindmap
PDF(199 KB)

Accesses

Citations

Detail

Sections
Recommended

/