Research on New Technology for Sandy Slope Safety Protection

Xiaodi Niu, Guangqing Yang, Weichao Liu

Strategic Study of CAE ›› 2017, Vol. 19 ›› Issue (6) : 86-91.

PDF(646 KB)
PDF(646 KB)
Strategic Study of CAE ›› 2017, Vol. 19 ›› Issue (6) : 86-91. DOI: 10.15302/J-SSCAE-2017.06.013
Study on Special Subjects
Orginal Article

Research on New Technology for Sandy Slope Safety Protection

Author information +
History +

Abstract

The stability of sandy slopes is poor, as are the protective effects of conventional protection measures. To effectively protect sandy slopes with chemical sand consolidation technology, a new type of sand consolidation agent, TD-1, was developed. In order to study the effect of sand consolidation, proportion optimization tests, penetration tests, wetting-drying cycle tests, and field tests were carried out. The results showed that the strength of the sand samples increases with the increase in the potassium water glass modulus when the ratios of the incorporated silica phosphate, lithium silicate, and silica sol remain the same; the optimum amount of potassium water glass added was 3 % of the solidified sand. The strength of the samples containing the modifier obviously increases, and the permeability of samples with low-modulus potassium water glass is relatively better; the strength of the samples decreases gradually with the increase in the wetting-drying cycle index, and after three cycles, the strength tends to be stable. TD-1 can be used with soil spraying technology for slope greening protection, and the solidified product is good for plant growing.

Keywords

sandy slope / sand consolidation agent / laboratory tests / field tests

Cite this article

Download citation ▾
Xiaodi Niu, Guangqing Yang, Weichao Liu. Research on New Technology for Sandy Slope Safety Protection. Strategic Study of CAE, 2017, 19(6): 86‒91 https://doi.org/10.15302/J-SSCAE-2017.06.013

References

[1]
中华人民共和国交通运输部. JTG D30—2015 公路路基设计规范[S]. 北京: 人民交通出版社, 2015. Ministry of Transport of the PRC. JTG D30—2015, specifications for design of highway subgrades [S].
[2]
中华人民共和国铁道部. TB10035—2006 铁路特殊路基设计规范[S]. 北京: 中国铁道出版社, 2010. Ministry of Railways of the PRC. TB10035—2006, code for de-sign on special subgrade of raiway [S].
[3]
刘瑞顺, 王文龙, 廖超英, 等. 露天煤矿排土场边坡防护措施减水减沙效益分析 [J]. 西北林学院学报, 2014, 29(4): 59–64.
[4]
杨钊. 道路防护工程的再生混凝土试验研究(硕士学位论文) [D]. 扬州: 扬州大学, 2015.
[5]
刘窑军. 三峡库区低等级土质道路侵蚀及防护研究(博士学位论文) [D]. 武汉: 华中农业大学, 2014.
[6]
李婷, 邓湘云, 李建保, 等. 铝硅酸盐改性固沙材料的研究 [J]. 材料导报, 2010, 24(15): 431–435.
[7]
蒋富强, 熊治文, 李凯崇, 等.一种化学固沙剂及其制备方法: 中国, 102127453 [P]. 2011-07-20.
[8]
Dong Z, Wang L, Zhao S. A potential compound for sand fixation synthesized from the effluent of pulp and paper mills [J]. Journal of Arid Environments, 2008, 72(7): 1388–1392.
[9]
Achilias D S, Roupalias C, Megalokonomos P, et al. Chemical re-cycling of plastic wastes made from polyethylene and polypropyl-ene [J]. Journal of Hazardous Materials, 2007, 149(3): 536–540.
[10]
牛笑笛, 杨广庆, 蒲昌瑜, 等. 新型固砂剂试验效果分析及边坡防护施工工艺研究 [J]. 铁道建筑, 2017 (2): 86–90.
[11]
田华, 陈连喜, 刘全文. 硅溶胶的性质、制备和应用 [J]. 国外建材科技, 2007, 28(2): 8–11.
[12]
殷馨, 戴媛静. 硅溶胶的性质、制法及应用 [J]. 化学推进剂与高分子材料, 2005, 3(6): 27–32.
AI Summary AI Mindmap
PDF(646 KB)

Accesses

Citations

Detail

Sections
Recommended

/