Future Modes of Fuel Bioethanol Industry

Meng Wang, Xiaojun Tian, Biqiang Chen, Hailong Lin, Guojun Yue

Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (2) : 47-54.

PDF(909 KB)
PDF(909 KB)
Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (2) : 47-54. DOI: 10.15302/J-SSCAE-2020.02.007
Development Strategy of Emerging Industries (2035)
Orginal Article

Future Modes of Fuel Bioethanol Industry

Author information +
History +

Abstract

The fuel bioethanol industry is one of the strategic emerging industries that China focuses on cultivating and developing. Against the background of the country’s deep integration of industrialization and informatization, intelligent and safety production, which can be realized relying on China’s advantages in the Industrial Internet and 5G technology and supported by new technologies such as big data, digital twins, and blockchain, can promote the high-quality development of the fuel bioethanol industry in China. This paper summarizes and analyzes the status and problems of the fuel bioethanol industry, and proposes the general idea for future modes in intelligent production, safety production, and industrial management of the fuel bioethanol industry. The development of the fuel bioethanol industry should be guided at the national strategic level and requires cooperation among the state, local governments, and enterprises, thus to promote the characteristic, joint, and intelligent development of bioethanol industrial bases. The cooperation between industry, universities, and research institutions should be strengthened to innovate production modes and technologies and to promote international competitiveness. Furthermore, key technologies should be developed to realize the production of fuel bioethanol using cellulose-based biomass as the raw material, thereby providing strategic reserves for ensuring national food security.

Keywords

fuel bioethanol / intelligent production / safety production / future modes

Cite this article

Download citation ▾
Meng Wang, Xiaojun Tian, Biqiang Chen, Hailong Lin, Guojun Yue. Future Modes of Fuel Bioethanol Industry. Strategic Study of CAE, 2020, 22(2): 47‒54 https://doi.org/10.15302/J-SSCAE-2020.02.007

References

[1]
中华人民共和国全国人民代表大会. 中华人民共和国可再生能 源法 [M]. 北京: 法律出版社, 2005. The National People’s Congress of the PRC. Law of the People’s Republic of China on renewable energy [M]. Beijing: Law Press·China, 2005.
[2]
中国工程科技发展战略研究院. 2019中国战略性新兴产业发展 报告 [M]. 北京: 科学出版社, 2019. China Academy of Engineering Science and technology Development Strategy. China’s strategic emerging industry development report 2019 [M]. Beijing: China Science Publishing & Media Ltd., 2019.
[3]
国家发展和改革委员会创新和高技术发展司, 中国生物工程学 会. 中国生物产业发展报告2018 [M]. 北京: 化学工业出版社, 2018. Innovation and High Technology Development Division of National Development and Reform Commission, Chinese Society of Bioengineering. Annual report on bioindustry in China: 2018 [M]. Beijing: Chemical Industry Press, 2018.
[4]
毛开云, 范月蕾, 王跃, 等. 国内外燃料乙醇产业现状+深度解析 [J]. 高科技与产业化, 2018, 265(6): 8–15. Mao K Y, Fan Y L, Wang Y, et al. Status quo of fuel ethanol industry at home and abroad + in-depth analysis [J]. HighTechology and Industrialization, 2018, 265(6): 8–15.
[5]
靳胜英. 世界燃料乙醇产业发展态势 [J]. 石油科技论坛, 2011 (2): 52–54. Jin S Y. Development trend of fuel ethanol industry in the world [J]. Petroleum Science and Technology Forum, 2011 (2): 52–54.
[6]
秦艳, 申乃坤, 王青艳, 等. 乙醇耐受性提高的酿酒酵母基因工 程菌株的构建 [J]. 可再生能源, 2016 (34): 1096–1100. Qin Y, Shen N K, Wang Q Y, et al. Construction of genetically engineered Saccharomyces cerevisiae strains with improved ethanol tolerance [J]. Renewable Energy Resources, 2016 (34): 1096–1100.
[7]
丁文涛. 提高酿酒酵母浓醪发酵乙醇产量的研究 [D]. 天津: 天 津大学 (博士学位论文), 2013. Ding W T. Study on the improvement of ethanol production by high gravity fermentation of Saccharomyces cerevisiae [D]. Tianjin: Tianjin University (Doctoral dissertation), 2013.
[8]
孙亚东, 蒋建新, 孙冉, 等. 纤维乙醇及渗透汽化原位分离技术 研究进展 [J]. 中国能源, 2008 (9): 23–27. Sun Y D, Jiang J X, Sun R, et al. Research progress of fiber ethanol and pervaporation in situ separation technology [J]. China Energy, 2008 (9): 23–27.
[9]
中国电子技术标准化研究院, 深圳华制智能制造技术有限公司, 东北大学. 流程型智能制造白皮书 [R]. 北京: 中国电子技术标 准化研究院, 2019. China Institute of Electronic Technology Standardization, Shenzhen Huazhi Intelligent Manufacturing Technology Co., Ltd., Northeast University. White paper on process intelligent manufacturing [R]. Beijing: China Institute of Electronic Technology Standardization, 2019.
[10]
德勤企业风险管理服务部. 工业4.0时代的长效驱动力——两化 融合 [M]. 上海: 上海交通大学出版社, 2015. Deloitte Enterprise Risk Management Service Department. Long term driving force in the era of industry 4.0: Integration of two industries [M]. Shanghai: Shanghai Jiaotong University Press, 2015.
[11]
Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing [J]. Engineering, 2018, 4(1): 11–20.
[12]
王基铭. 我国石化产业面临的挑战及对策建议 [J]. 当代石油石 化, 2015, 23(11): 1–7. Wang J M. Challenges facing China’s petrochemical industry and their countermeasure suggestions [J]. Petroleum & Petrochemical Today, 2015, 23(11): 1–7.
[13]
Zhang S L, Chu J, Zhuang Y P. A multi-scale study on industrial fermentation processes and their optimization [J]. Advances in Biochemical Engineering and Biotechnology, 2004, 87: 97–150.
[14]
庄英萍, 田锡炜, 张嗣良. 基于多尺度参数相关分析的细胞培养 过程优化与放大 [J]. 生物产业技术, 2018 (1): 49–55. Zhuang Y P, Tian X W, Zhang S L. Optimization and amplification of cell culture process based on multi-scale parameter correlation analysis [J]. Biotechnology & Business, 2018 (1): 49–55.
[15]
张嗣良, 储炬. 多尺度微生物过程优化 [M]. 北京: 化学工业出 版社, 2003. Zhang S L, Chu J. Multi scale microbial process optimization [M]. Beijing: Chemical Industry Press, 2003.
[16]
余骋远. 基于工业大数据的设备健康与故障分析方法研究与应 用 [D]. 沈阳: 中国科学院沈阳计算技术研究所 (硕士学位论文), 2017. Yu P Y. Research and application of equipment health and fault analysis method based on industrial big data [D]. Shenyang: Shenyang Institute of computing technology, Chinese Academy of Sciences (Master’s thesis), 2017.
[17]
徐煜杰. 工业大数据挖掘分析及应用前景研究 [J]. 电子技术与 软件工程, 2016 (22): 159–159. Xu Y J. Industrial big data mining analysis and application prospect research [J]. Electronic Technology and Software Engineering, 2016 (22): 159–159.
[18]
陈肇雄. 工业互联网是智能制造的核心 [J]. 中国信息化, 2016 (1): 7–8. Chen Z X. Industrial Internet is the core of intelligent manufacturing [J]. China Informatization, 2016 (1): 7–8.
[19]
王晨. 拥抱工业互联网的正确姿势: 业务驱动, “造一把可 靠的锤子” [N/OL]. 中国科学报, 2018-10-11 (5). http://news. sciencenet.cn/sbhtmlnews/2018/10/339768.shtm?id=339768. Wang C. Embrace the right posture of industrial internet: Business driven, “build a reliable hammer” [N/OL]. China Science Daily, 2018-10-11 (5). http://news.sciencenet.cn/ sbhtmlnews/2018/10/339768.shtm?id=339768.
[20]
金盛翔. 区块链, 如何定义未来生活? [J]. 杭州(周刊), 2018, 502(18): 8–11. Jin S X. Blockchain, how to define future life? [J]. Hangzhou Weekly, 2018, 502 (18): 8–11.
[21]
亓一航. 基于SDN智能体的工业网络流量调度机制研究 [D]. 浙 江: 浙江工商大学 (硕士学位论文), 2019. Qi Y H. Research on traffic scheduling mechanism in industrial network based on SDN intelligence [D]. Zhejiang, Zhejiang Gongshang University (Master’s thesis), 2019.
[22]
尚舵. 区块链技术在能源行业的应用前景 [J]. 电力信息与通信 技术, 2019, 17(2): 5–12. Shang D. Application prospect of blockchain technology in energy industry [J]. Electric Power Information and Communication Technology, 2019, 17 (2): 5–12.
[23]
Metelitsa C. Blockchain for energy 2018: Companies and applications for distributed ledger technologies on the grid [R]. San Francisco: Greentech Media Inc., 2018.
Funding
CAE Advisory Project “Research on the Development Strategy of Emerging Industries” (2018-ZD-12); CAE Advisory Project “Research on Development Strategy of Green Biomanufacturing Industry Based on Sugar Platform”(2018-XZ-13)
AI Summary AI Mindmap
PDF(909 KB)

Accesses

Citations

Detail

Sections
Recommended

/