Simulation and Evaluation of Real-Time and Intelligent Space-Based Information Service System of China

Hao Jiang, Deren Li, Xin Shen, Jing Wu

Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (2) : 153-160.

PDF(1186 KB)
PDF(1186 KB)
Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (2) : 153-160. DOI: 10.15302/J-SSCAE-2020.02.019
Engineering Management
Orginal Article

Simulation and Evaluation of Real-Time and Intelligent Space-Based Information Service System of China

Author information +
History +

Abstract

The real-time and intelligent space-based information service system is a next-generation space-based information system featuring multi-satellite coordination and multi-network interconnection. It will be widely used in satellite communications, navigation, and remote sensing. To support the top-level design and construction of the real-time and intelligent space-based information service system, this paper studies the modeling simulation and performance evaluation of the system, and analyzes the necessity, requirements, and development trends of system simulation and evaluation. The key technologies such as scalable and efficient distributed simulation, spatial-temporal dynamic evaluation, and systematic modeling are discussed, considering the characteristics of the system, such as dynamic time-varying, diverse business, and heterogeneity. Based on the design of the distributed simulation and evaluation system, the transmission support capabilities of different low-orbit communication satellite systems are compared and evaluated, taking high-resolution remote sensing as an example. The results show that during the remote sensing data transmission process, the OneWeb satellite constellation has smaller delay, less packet loss, and higher capacity and stability, owing to its dense coverage; however, its capacity per satellite is inferior to that of the Hongyun satellite constellation which has a smaller coverage density. This study can provide technical supports for the feasibility evaluation and construction of the real-time and intelligent space-based information
service system.

Keywords

space-based information / real-time services / simulation / evaluation / low-orbit communication satellite system

Cite this article

Download citation ▾
Hao Jiang, Deren Li, Xin Shen, Jing Wu. Simulation and Evaluation of Real-Time and Intelligent Space-Based Information Service System of China. Strategic Study of CAE, 2020, 22(2): 153‒160 https://doi.org/10.15302/J-SSCAE-2020.02.019

References

[1]
李德仁. 论军民深度融合的通导遥一体化空天信息实时智能服 务系统 [J]. 军民两用技术与产品, 2018 (15): 14–17. Li D R. On the real-time intelligent service system integrating communication, navigation, remote sensing for military and civilian [J]. Dual Use Technologies & Products, 2018 (15): 14–17.
[2]
李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航 一体天基信息实时服务系统 [J]. 武汉大学学报(信息科学版), 2017, 42(11): 1501–1505. Li D R, Shen X, Li D L, et al. On civil-military integrated spacebased real-time information service system [J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1501– 1505.
[3]
Luu K, Martin M, Stallard M, et al. University nanosatellite distributed satellite capabilities to support TechSat 21 [R]. Logan: American Institute of Aeronautics and Astronautics / Utah State University, 1999.
[4]
Bertiger W, Bar-Server Y, Battadpur S, et al. GRACE: Millineters and microns in orbit [R]. Washington DC: National Aeronautics and Space Administration, 2002.
[5]
Zencik R, Kohlhepp K. GPS micro navigation and communication system for clusters of micro and nanosatellites [R]. Big Sky: Institute of Electrical and Electronics Engineers / Utah State University, 2000.
[6]
Gunnam K K, Hughes D C, Junkins J L, et al. A vision-based DSP embedded navigation sensor [J]. IEEE Sensors Journal, 2002, 2(5): 428–442.
[7]
Tien J Y, Srinivasan J M, Young L E, et al. Formation acquisition sensor for the Terrestrial Planet Finder (TPF) mission [R]. Big Sky: Institute of Electrical and Electronics Engineers / Utah State University, 2004.
[8]
Purcell G, Kuang D, Lichten S, et al. Autonomous formation flyer (AFF) sensor technology development [R]. Washington DC: National Aeronautics and Space Administration, 1998.
[9]
Gill E, Steckling M, Butz P. Gemini: A mileston towards autonomous formation flying [R]. Noordwijk: European Space Agency, 2001.
[10]
王航, 陈勇, 宋旭民, 等. 基于DDS的空间平台仿真试验床信息 交互技术研究 [J]. 现代电子技术, 2014, 37(20): 7–10. Wang H, Chen Y, Song X M, et al. Research on informationexchange technology for space simulative test-bed based on DDS [J]. Modern Electronics Technique, 2014, 37(20): 7–10.
[11]
高小亮, 马骏骁, 李劼. HLA-DDS分布式通信卫星仿真系统 [J]. 国外电子测量技术, 2017, 36(6): 89–95. Gao X L, Ma J X, Li J. HLA-DDS distributed simulation system of telecommunication satellite [J]. Foreign Electronic Measurement Technology, 2017, 36(6): 89–95.
[12]
张志鹤, 史璐莎, 张斌, 等. 一种基于DDS与HLA的实时性联合 仿真系统 [J]. 电子设计工程, 2017, 25(10): 26–30. Zhang Z H, Shi L S, Zhang B, et al. A real-time simulation system based on DDS & HLA [J]. Electronic Design Engineering, 2017, 25(10):26–30.
[13]
鲁娜, 张杰, 马东堂. 卫星通信系统抗干扰性能评估指标体系研 究 [J]. 现代电子技术, 2014, 37(19): 29–32. Lu N, Zhang J, Ma D T. Study on anti-jamming performance evaluation index system of satellite communication system [J]. Modern Electronics Technique, 2014, 37(19): 29–32.
[14]
许相莉, 胡晓峰, 秦永刚. 基于“四域”的卫星通信系统效能评估 指标体系 [J]. 指挥与控制学报, 2015, 1(2): 220–222. Xu X L, Hu X F, Qin Y G. A type of effectiveness evaluation assessment indicator system for satellite communication system based on the “Four-Domain” [J]. Journal of Command and Control, 2015, 1(2): 220–222.
[15]
彭耿. 面向任务的遥感卫星信息支援能力评估指标体系构建 [J]. 指挥控制与仿真, 2019, 41(2): 15–19. Peng G. Index system construction of information support capability evaluation of remote sensing satellite task-oriented [J]. Command Control & Simulation, 2019, 41(2): 15–19.
[16]
覃鹏程, 郝胜勇, 秦国政. 基于遥感卫星应用体系贡献度评估方 法研究 [J]. 电子设计工程, 2019, 27(2):70–73, 79. Qin P C, Hao S Y, Qin G Z. Research on evaluation method of contribution rate to SOS for remote sensing satellite application [J]. Electronic Design Engineering, 2019, 27(2): 70–73, 79.
[17]
段亚军, 武昌, 李成恩. 一种改进的卫星导航系统效能评估模型 [J]. 火力与指挥控制, 2008, 33(5): 133–136. Duan Y J, Wu C, Li C E. An improved model of effectiveness evaluation of satellite navigation system [J]. Fire Control & Command Control, 2008, 33(5): 133–136.
[18]
郭树人, 蔡洪亮, 孟轶男, 等. 北斗三号导航定位技术体制与服 务性能 [J]. 测绘学报, 2019, 48(7): 810–821. Guo S R, Cai H L, Meng Y N, et al. BDS-3 RNSS technical characteristics and service performance [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 810–821.
[19]
李张元, 赵忠文, 杨苗本. 基于复杂网络的空间信息网脆弱性研 究综述 [J]. 兵器装备工程学报, 2018, 39(6): 159–164. Li Z Y, Zhao Z W, Yang M B. Literature review on vulnerability of space information network based on complex networks [J]. Journal of Ordnance Equipment Engineering, 2018, 39(6): 159–164.
[20]
杨兴, 吴静, 江昊, 等. 基于仿真数据驱动的空间信息网络建模 方法 [J]. 系统仿真学报, 2018, 30(11): 4323–4333, 4339. Yang X, Wu J, Jiang H, et al. Simulation data-driven modeling approach for space information network [J]. Journal of System Simulation, 2018, 30(11): 4323–4333, 4339.
[21]
郜林. 基于OPNET的通信网仿真 [M]. 西安: 西安电子科技大学 出版社, 2018. Gao L. Communication network simulation based on OPNET [M]. Xi’an: Xidian University Press, 2018.
[22]
徐以标, 王兴建, 尹建月. 基于Exata的网络通信协议仿真 [J]. 计 算机与数字工程, 2014 (11): 2212–2216. Xu Y B, Wang X J, Yin J Y. Simulation of network communication protocols based on Exata [J]. Computer and Digital Engineering, 2014 (11): 2212–2216.
[23]
Proakis J G, Salehi M, Bauch G. Modern communication systems using MATLAB [M]. Noida, Uttar Pradesh: Cengage Learning India Private Limited, 2013.
Funding
CAE Advisory Project “Strategy Research on the development of Space Based Information Real Time Service System (PNTRC)” (2017-ZD-01)
AI Summary AI Mindmap
PDF(1186 KB)

Accesses

Citations

Detail

Sections
Recommended

/