Development Strategies for New Energy Materials in China

Xuejie Huang, Wenwu Zhao, Zhigang Shao, Liquan Chen

Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (5) : 60-67.

PDF(402 KB)
PDF(402 KB)
Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (5) : 60-67. DOI: 10.15302/J-SSCAE-2020.05.004
Research on New Material Power Strategy by 2035
Orginal Article

Development Strategies for New Energy Materials in China

Author information +
History +

Abstract

New energy materials are an important element for the strategic emerging industries and they are also important concerning economic and social development as well as national security. In this paper, we summarize the development status of the key materials for lithium-ion batteries and fuel cells in China and abroad and analyze the problems of China’s new energy materials industry,which include shortage of original innovation, insecure industry chain of key strategic materials, low self-sufficiency rate of high end products, insufficient self-supply of high-end applications, and lack of platforms for collaboration among production, education,research, and application. The development trends of the key materials industry are also prospected. In view of the development requirements by 2025 and 2035, we expound the development ideas for the new energy materials regarding the lithium-ion batteries and fuel cells and elaborate the development goals and key tasks. To achieve leapfrog development, China should improve top-level planning and enhance its support policies for innovation-driven development to foster competitive enterprises. It also should establish a production and application demonstration platform and strengthen talent training.

Keywords

new energy materials / lithium-ion battery / fuel cell / development strategy

Cite this article

Download citation ▾
Xuejie Huang, Wenwu Zhao, Zhigang Shao, Liquan Chen. Development Strategies for New Energy Materials in China. Strategic Study of CAE, 2020, 22(5): 60‒67 https://doi.org/10.15302/J-SSCAE-2020.05.004

References

[1]
蒋利军, 张向军, 刘晓鹏, 等. 新能源材料的研究进展 [J]. 中国 材料进展, 2009, 28(7–8): 50–56. Jiang L J, Zhang X J, Liu X P, et al. Progress in research of new energy materials [J]. Materials China, 2009, 28(7–8): 50–56.
[2]
张翼燕. 日本发布《纳米与材料科学技术研发战略》 [J]. 科技中国, 2019, 2(2): 76–79. Zhang Y Y. Japan releases research and development strategy of nanotechnology and materials science and technology [J]. China SciTechnology Business, 2019, 2(2): 76–79.
[3]
屠海令, 张世荣, 李腾飞. 我国新材料产业发展战略研究 [J]. 中 国工程科学, 2016, 18(4): 90–100. Tu H L, Zhang S R, Li T F. Research on development strategies for China’s advanced materials industry [J]. Strategic Study of CAE, 2016, 18(4): 90–100.
[4]
王昶, 宋慧玲, 耿红军, 等. 关键新材料创新突破的研究回顾与 展望 [J]. 资源科学, 2019, 41(2): 207–218. Wang C, Song H L, Geng H J, et al. Review and prospect of advanced material innovative development [J]. Resources Science, 2019, 41(2): 207–218.
[5]
中华人民共和国科学技术部. 科技部关于印发《“十三五”材料 领域科技创新专项规划》的通知 [EB/OL]. (2017-04-14) [2020-08- 30]. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/ gfxwj2017/201704/t20170426_132496.html. Ministry of Science and Technology of the People’s Republic of China. Notice on the issuance of the special plan for scientific and technological innovation in the material field during the 13th Five-Year Plan period [EB/OL]. (2017-04-14) [2020-08-30]. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/ gfxwj2017/201704/t20170426_132496.html.
[6]
Proietti E, Jaouen F, Lefevre M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells [J]. Nature Communications, 2011 (2): 1–9.
[7]
Shui J, Chen C, Grabstanowicz L, et al. Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34): 10629–10634.
[8]
Luo L, Zhu F, Tian R, et al. Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction [J]. ACS Catalysis, 2017, 7(8): 5420–5430.
[9]
Tang X, Fang D, Qu L, et al. Carbon-supported ultrafine Pt nanoparticles modified with trace amounts of cobalt as enhanced oxygen reduction reaction catalysts for proton exchange membrane fuel cells [J]. Chinese Journal of Catalysis, 2019, 40(4): 504–514.
[10]
Lu B A, Sheng T, Tian N, et al. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au [J]. Nano Energy, 2017, 33: 65–71.
[11]
Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J]. Science, 2007, 315(5811): 493–497.
[12]
Wood T E, Tan Z, Schmoeckel A K, et al. Non-precious metal oxygen reduction catalyst for PEM fuel cells based on nitroaniline precursor [J]. Journal of power sources, 2008, 178(2): 510–516.
AI Summary AI Mindmap
PDF(402 KB)

Accesses

Citations

Detail

Sections
Recommended

/