
Environmental and Ecological Protection Equipment in Deep Sea
Jingchun Feng, Jianzhen Liang, Si Zhang, Yanpeng Cai, Zhifeng Yang
Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (6) : 56-66.
Environmental and Ecological Protection Equipment in Deep Sea
The deep sea contains treasures that are far from being recognized and exploited. However, as the new focus of human activities and territory, the deep sea confronts more serious problems and challenges regarding environmental and ecological protection compared with the land and inshore areas. To ensure the coordinated development between deep-sea resource exploitation and environmental protection, this study first introduces the different types of equipment related to environmental and ecological protection in the deep sea, and summarizes the historical and current situations of and challenges faced by this equipment in the international and domestic scope. Additionally, deep-sea equipment related to environmental and ecological protection are introduced from the aspects of in situ detection, sampling, experimental simulation on land, and long-period observation. China lags behind in terms of highprecision deep sea sensor technology and lacks general matching technology for deep sea exploration equipment. Large-scale deep sea environment simulation equipment needs to be improved urgently in China. Moreover, long-period in situ experimental ability related with manned submersibles should be improved. Finally, development strategies and suggestions are proposed from the aspects of innovation capability, top-level design, talents cultivation, and international cooperation.
deep sea / environmental andecological protection / in situ experiment / truth-preserving sampling / in situ simulation
[1] |
Dekov V M, Cuadros J, Kamenov G D, et al. Metalliferous sediments from the H.M.S. Challenger voyage (1872—1876) [J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5019–5038.
|
[2] |
Kirkham N R, Gjerde K M, Wilson A M W. DEEP-SEA mining: Policy options to preserve the last frontier—Lessons from Antarctica’s mineral resource convention [J]. Marine Policy, 2020, 115: 103859.
|
[3] |
Schofield O, Kohut J, Aragon D, et al. Slocum gliders: Robust and ready [J]. Journal of Field Robotics, 2007, 24(6): 473–485.
|
[4] |
Kumagai H, Tsukioka S, Yamamoto H, et al. Hydrothermal plumes imaged by high-resolution side-scan sonar on a cruising AUV, Urashima [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(12): 12013.
|
[5] |
Blandin J, Colaço A, Legrand J, et al. The MoMAR D project: A challenge to monitor in real time the Lucky Strike hydrothermal vent field [J]. ICES Journal of Marine Science, 2010, 68: 416–424.
|
[6] |
Smith K, Ruhl H, Bett B, et al. Climate, carbon cycling, and deepocean ecosystems [J]. Proceedings of the National Academy of Sciences, 2009, 106(46): 19211–19218.
|
[7] |
Tunnicliffe V, Barnes C R, Dewey R. Major advances in cabled ocean observatories (VENUS and NEPTUNE Canada) in coastal and deep sea settings [C]. Tallinn: Baltic International Symposium, 2008: 1–7.
|
[8] |
Best M, Barnes C, Bornhold B, et al. Integrating continuousobservatory data from the coast to the abyss: a multidisciplinary view of theocean in four dimensions [C]. Favali P, Santis A D, Beranzoli L (eds.). Sea floorobservatories: A New Vision of the Earth from the Abyss. Berlin: Springer, 2013: 500.
|
[9] |
Favali P, Beranzoli L. EMSO: European multidisciplinary seafloor observatory [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602(1): 21–27.
|
[10] |
Houghton J L, Seyfried W E, Banta A B, et al. Continuous enrichment culturing of thermophiles under sulfate and nitratereducing conditions and at deep-sea hydrostatic pressures [J]. Extremophiles, 2007, 11: 371–382.
|
[11] |
Zhang Y, Arends J B A, Wiele T V, et al. Bioreactor technology in marine microbiology: From design to future application [J]. Biotechnology Advances, 2011, 29(3): 312–321.
|
[12] |
Sven P, Peter M H , Thomas K, et al. Shallow drilling of seafloor hydrothermal systems using the BGS rockdrill: Conical Seamount (New Ireland Fore-Arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea [J]. Marine Georesources and Geotechnology, 2005, 23:175–193.
|
[13] |
Freudenthal T, Wefer G. Scientific drilling with the sea floor drill rig mebo [J]. Scientific Drilling, 2007 (5):63–66.
|
[14] |
Miyazaki J, Makabe A, Matsui Y, et al. WHATS-3: An improved flow-through multi-bottle fluid sampler for deep-sea geofluid research [J]. Frontiers in Earth Science, 2017, 5: 45.
|
[15] |
张鑫. 深海环境及深海沉积物拉曼光谱原位定量探测技术研究 [D]. 青岛: 中国海洋大学(博士学位论文), 2009. Zhang X. Quantitative applications of raman technique for deepsea environment and sediment detection [D]. Qingdao: Ocean University of China(Doctoral dissertation), 2009.
|
[16] |
刘光发. 深海原位激光诱导击穿光谱仪软件的设计与实现 [D]. 青岛: 中国海洋大学(硕士学位论文), 2015. Liu G F. The software design and realization for deep-sea situ laser induced breakdown spectrometer [D]. Qingdao: Ocean University of China(Master`s thesis), 2015.
|
[17] |
刘仲明. 深海浊度探头及其信号处理技术研究 [D]. 杭州: 浙江 大学(硕士学位论文), 2005. Liu Z M. The research of technology on turbidity sensor used in deep sea and signal processing [D]. Hangzhou: Zhejiang University(Master’s thesis), 2005.
|
[18] |
Zhang X, Zhang R, Hu S, et al. Development of Zr/ZrO2 high temperature and high pressure sensors for in-situ measuring chemical parameters of deep-sea water [J]. Science in China Series E: Technological Sciences, 2009, 52(8): 2466–2473.
|
[19] |
万步炎, 黄筱军. 深海浅地层岩芯取样钻机的研制 [J]. 矿业研 究与开发, 2006 (增刊1) :49–51. Wan B Y, Huang X J. Development of core sampling drilling for deep seabed Shallow Strata [J]. Mining Research and Development, 2006(S1):49–51.
|
[20] |
程振波, 吴永华, 石丰登, 等. 深海新型取样仪器——电视抓斗 及使用方法 [J]. 海岸工程, 2011, 30(1): 51–54. Cheng Z B, Wu Y H, Shi F D, et al. New type of sampler for deepsea deposit: Grab with TV and its usage [J]. Coastal Engineering, 2011, 30(1): 51–54.
|
[21] |
秦华伟, 陈建桥, 王建军, 等. 静水压力驱动取样器的设计与实 验研究 [J]. 中国机械工程, 2013: 942–945. Qin H W, Chen J Q, Wang J J, et al. Design and sea trial research of new hydrostatic corer [J]. China Mechanical Engineering, 2013, 942–945.
|
[22] |
刘广虎, 陈道华, 杨灿军, 等. 深海分层气密水样采集系统的设 计与应用 [J]. 气象水文海洋仪器, 2009, 26(2): 9–12. Liu G H, Chen D H, Yang C J, et al. Design and application of stratified gastight system for acquiring water sample in deep-sea [J]. Meteorological Hydrological and Marine Instrument, 2009, 26(2): 9–12.
|
[23] |
潘金伟. 深海热液多腔取样器的开发设计 [D]. 青岛: 青岛科技 大学(硕士学位论文), 2015. Pan J W. The design of deep-sea hydrothermal sampler with multicavity [D]. Qingdao: Qingdao University of Science & Technology (Master’s thesis), 2015.
|
[24] |
安莉. 新型天然气水合物保真筒保压特性研究 [D]. 杭州: 浙江 大学(硕士学位论文), 2014. An L. Research on pressure-holding characteristics of a new deep-water fidelity canister[D]. Hangzhou: Zhejiang University (Master’s thesis), 2014.
|
[25] |
李超. 深海超高压环境模拟系统的可靠性分析 [D]. 青岛: 国家 海洋局第一海洋研究所(硕士学位论文), 2013. Li C. Reliability analysis of deep sea ultra-high pressure environment simulation system [D]. Qingdao: First Institute of Oceanography, MNR(Master’s thesis), 2013.
|
[26] |
李双林, 董贺平, 赵青芳, 等. 海底烃类气体渗漏实验模拟: 烃类 气体含量及分子组成变化与渗漏过程重建 [J]. 海洋地质前沿, 2020, 36(5): 1–13. Li S L, Dong H P, Zhao Q F, et al. Experimental simulation of seabed hydrocarbon gas seepage: Variation of content and molecular composition of the hydrocarbon variation of content and molecular composition of the hydrocarbon [J]. Marine Geology Frontiers, 2020, 36(5): 1–13.
|
[27] |
王玉彬, 樊栓狮, 关进安, 等. 海底渗漏系统水合物生成过程实 验模拟 [J]. 天然气地球科学, 2007 (4): 596–600. Wang Y B, Fan S S, Guan J A, et al. Experimental simulation of oceanic leakage hydrate formation [J]. Natural Gas Geoscience, 2007 (4): 596–600.
|
[28] |
黄阳玉. 模拟深海环境下热液气体的拉曼光谱实验研究 [D]. 青 岛: 中国海洋大学(硕士学位论文), 2009. Wang Y Y. Raman spectrometry measurement of hydrothermal gases under simulated deep-sea environment [D]. Qingdao: Ocean University of China(Master’s thesis), 2009.
|
[29] |
董贤信, 蒋凯, 陈杭, 等. 深海极端环境模拟装置设计 [J]. 热带 海洋学报, 2014, 33: 101–108. Dong X X, Jiang K, Chen H, et al. A design of deep-sea extreme environment simulator [J]. Journal of Tropical Oceanography, 2014, 33: 101–108.
|
[30] |
刘勇, 程谦, 吴德发, 等. 全海深环境模拟实验台的研制 [J]. 液 压与气动, 2020 (8):7–11. Liu Y, Cheng Q, Wu D F, et al. Development of an experiment device for simulating full depth ocean environment [J]. Chinese Hydraulics & Pneumatics, 2020 (8):7–11.
|
[31] |
李健, 陈荣裕, 王盛安, 等. 国际海洋观测技术发展趋势与中国 深海台站建设实践 [J]. 热带海洋学报, 2012, 31(2): 123–133. Li J, Chen R Y, Wang S A, et al. Development of international marine observation system and construction of deep-sea station in China [J]. Journal of Tropical Oceanography, 2012, 31(2): 123–133.
|
/
〈 |
|
〉 |