Development of Deep-Sea Biological Resources Exploitation Equipment

Jingchun Feng, Jianzhen Liang, Si Zhang, Zhifeng Yang, Zhenchang Zhu

Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (6) : 67-75.

PDF(2650 KB)
PDF(2650 KB)
Strategic Study of CAE ›› 2020, Vol. 22 ›› Issue (6) : 67-75. DOI: 10.15302/J-SSCAE-2020.06.009
Development Strategy of Marine Equipment
Orginal Article

Development of Deep-Sea Biological Resources Exploitation Equipment

Author information +
History +

Abstract

The extreme environment in the deep sea gave birth to the largest ecosystem in the world that is far from known. The deepsea environment possesses a huge amount of biological resources with special functions. Exploitation equipment plays an important role in promoting the green, safe, and orderly development of the deep-sea biological resources. To clarify the characteristics and technical challenges of the equipment for deep-sea biological resources exploitation and explore its development directions and focus, we investigate the technical requirements of deep-sea biological resources exploitation, introduce the current status of the deep-sea biological resource exploitation equipment, and analyzes the challenges faced in the development of these equipment. To overcome the difficulties such as lack of unified standards, shortage of testing platforms, and deficiency in technology transformation, we propose several suggestions from the perspective of innovation system, general technology, transformation platform, and international cooperation, hoping to contribute to the sustainable development of the deep-sea biological resources from the equipment development perspective.

Keywords

deep sea / biological resources / in situ observation / sample / in situ experiment

Cite this article

Download citation ▾
Jingchun Feng, Jianzhen Liang, Si Zhang, Zhifeng Yang, Zhenchang Zhu. Development of Deep-Sea Biological Resources Exploitation Equipment. Strategic Study of CAE, 2020, 22(6): 67‒75 https://doi.org/10.15302/J-SSCAE-2020.06.009

References

[1]
Koslow J A. The silent deep: The discovery, ecology, and conservation of the deep sea [M]. Chicago: University of Chicago Press, 2007.
[2]
Smith C R, De Leo F C, Bernardino A F, et al. Abyssal food limitation, ecosystem structure and climate change [J]. Trends in Ecology & Evolution, 2008, 23(9): 518–528.
[3]
Ramirez-Llodra E, Brandt A, Danovaro R, et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem [J]. Biogeosciences, 2010, 7(9): 2851–2899.
[4]
Vinogradov G M. Vertical distribution of macroplankton at the Charlie-Gibbs Fracture Zone (North Atlantic), as observed from the manned submersible “Mir-1” [J]. Marine Biology, 2005, 146(2): 325–331.
[5]
Stemmann L, Hosia A, Youngbluth M J, et al. Vertical distribution (0-1000 m) of macrozooplankton, estimated using the underwater video profiler, in different hydrographic regimes along the northern portion of the Mid-Atlantic Ridge [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(1–2): 94–105.
[6]
Sherman A D, Smith Jr K L. Deep-sea benthic boundary layer communities and food supply: A long-term monitoring strategy [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(19–20): 1754–1762.
[7]
Levin L A, Bett B J, Gates A R, et al. Global observing needs in the deep ocean [J]. Frontiers in Marine Science, 2019, 6: 1–32.
[8]
Williams D L, Green K, Van Andel T H, et al. The hydrothermal mounds of the Galapagos Rift: Observations with DSRV Alvin and detailed heat flow studies [J]. JGR Solid Earth, 1979, 84(B13): 7467–7484.
[9]
Clark M R, Consalvey M, Rowden A A. Biological sampling in the deep sea [M]. New Jersey: John Wiley & Sons, Inc., 2016.
[10]
Clark M R, Rowden A A. Effect of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(9): 1540–1554.
[11]
Rees H L, Bergman M J N, Birchenough S N R, et al. Guidelines for the study of the epibenthos of subtidal environments [C]. Copenhagen: International Council for the Exploration of the Sea, 2009.
[12]
Phillips B T, Becker K P, Kurumaya S, et al. A dexterous, glovebased teleoperable low-power soft robotic arm for delicate deepsea biological exploration [J]. Scientific Reports, 2018, 8(1): 1–9.
[13]
Vogt D, Becker K P, Phillips B, et al. Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms [J]. PloS One, 2018, 13(8): 1–16.
[14]
Marc G, Patricia B, Séverine M, et al. Pressure-retaining sampler and high-pressure systems to study deep-sea microbes under in situ conditions [J]. Frontiers in Microbology, 2019, 10: 1–13.
[15]
刘少军, 陈毅章, 李力, 等. 深海保真取样器研究及其虚拟样机 实现 [J]. 机械工程与自动化, 2005 (1): 1–4Liu S J, Chen Y Z, Li L, et al. A pressure & temperature-retained sampler in deep sea and it’s virtual prototype [J]. Mechanical Engineering & Automation, 2005 (1): 1–4.
[16]
葛朝平. 深海近底层多网分段/分层生物幼体保压取样器研究 [D]. 杭州: 浙江大学(硕士学位论文), 2008. Ge C P. Research on near the bottom of deep-sea biological larva pressure-retained sampler of multiple nets subsection/layered [D]. Hangzhou: Zhejiang University(Master’s thesis), 2008.
[17]
李现慧. 深海近底层生物幼体直视取样装置监控系统研制 [D]. 杭州: 杭州电子科技大学(硕士学位论文), 2013. Li X H. Research and design of near the bottom of deep-sea remote video surveillance system for marine beacon biological larva sampler [D]. Hangzhou: Hangzhou Dianzi University(Master’s thesis), 2013.
[18]
陈奇. 基于光电复合缆的深海摄像系统技术方案探讨与开发 [J]. 海洋技术, 2013, 32(4): 89–92. Chen Q. Technical solution and development of a deep-sea video system based on optical composite cable [J]. Ocean Technology, 2013, 32(4): 89–92.
[19]
于海滨, 陈启, 杨俊毅. 基于生物识别与分类的高清深海摄像系 统 [J]. 电子技术与软件工程, 2015 (14): 90–93. Yu H B, Chen Q, Yang J Y. High definition deep sea camera system based on biometrics and classification [J]. Electronic Technology & Software Engineering, 2015 (14): 90–93.
[20]
王蕾, 王丽萍, 董纯明, 等. 南海深海氮循环微生物的原位培养 与多样性分析 [J]. 应用海洋学学报, 2019, 38(1): 1–13. Wang L, Wang L P, Dong C M, et al. Deep sea in situ cultivation and diversity analysis of microorganism involved in nitrogen cycling in the South China Sea [J]. Journal of Applied Oceanography, 2019, 38(1): 1–13.
[21]
郦炳杰. 深海实验生态系统时间序列原位观测装置的研制 [D]. 杭州: 浙江大学(硕士学位论文), 2018. Li B J. Development of time series in situ observation device for deep-sea experimental ecosystem [D]. Hangzhou: Zhejiang University(Master’s thesis), 2018.
[22]
李世伦, 侯继伟, 叶树明, 等. 深海极端环境模拟平台控制系统 研究 [J]. 浙江大学学报(工学版), 2005, 39(11): 1769–1772 Li S L, Hou J W, Ye S M, et al. Control system of simulating platform for deep-sea extreme environment [J]. Journal of Zhejiang University(Engineering Science), 2005, 39(11): 1769– 1772.
[23]
Yang S S, Lv Y X, Liu X P, et al. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea [J]. Nature Communications, 2020, 11(1): 1–12.
[24]
高振会, 史先鹏. 深海技术与可持续发展 [J]. 海洋开发与管理, 2011, 28(7): 41–46. Gao Z H, Shi X P. Deep-sea technology and sustainable development [J]. Ocean Development and Management, 2011, 28(7): 41–46.
[25]
刘保华, 丁忠军, 史先鹏, 等. 载人潜水器在深海科学考察中的 应用研究进展 [J]. 海洋学报, 2015, 37(10): 1–10 Liu B H, Ding Z J, Shi X P, et al. Progress of the application and research of manned submersibles used in deep sea scientific investigations [J]. Acta Oceanologica Sinica, 2015, 37(10): 1–10.
[26]
中国科学院海斗深渊前沿科技问题研究与攻关战略性先导科 技专项研究团队. 开启深渊之门——海斗深渊前沿科技问题研 究与攻关先导科技专项进展 [J]. 中国科学院院刊, 2016, 31(9): 1105–1111. Team of Strategic Priority Program of Frontier Study on Hadal Science and Technology. Open a door to the hadal trenches— Progress on frontier study on hadal science and technology [J]. Bulletin of Chinese Academy of Sciences, 2016, 31(9): 1105– 1111.
[27]
陶军, 陈宗恒. “海马”号无人遥控潜水器的研制与应用 [J]. 工程 研究, 2016, 8(2): 185–191. Tao J, Chen Z H. Development and application of HAIMA (ROV) [J]. Journal of Engineering Studies, 2016, 8(2): 185–191.
[28]
杨磊, 杜志元, 陈云赛, 等. 我国三类典型深海运载装备应用技 术研究 [J]. 海洋开发与管理, 2018, 35(9): 100–106. Yang L, Du Z Y, Chen Y S, et al. The operation and application technology of China’s three typical deep-sea submersibles [J]. Ocean Development and Management, 2018, 35(9): 100–106.
[29]
刘振宇, 管泉, 刘瑾, 等. 青岛市海洋环境观测产业发展 [J]. 中 国科技信息, 2016 (10): 96–99 Liu Z Y, Guan Q, Liu J, et al. Development of marine environment observation industry in Qingdao [J]. China Science and Technology Information, 2016 (10): 96–99.
[30]
马贝, 王彦霖, 高强. 国外海洋产业发展经验对中国的启示 [J]. 世界农业, 2016 (7): 79–84. Ma B, Wang Y L, Gao Q. The enlightenment of foreign marine industry development experience to China [J]. World Agriculture, 2016 (7): 79–84.
AI Summary AI Mindmap
PDF(2650 KB)

Accesses

Citations

Detail

Sections
Recommended

/