Developing from Mechanized to Smart Agricultural Production in China

Xiwen Luo, Juan Liao, Ying Zang, Yinggang Ou, Pei Wang

Strategic Study of CAE ›› 2022, Vol. 24 ›› Issue (1) : 46-54.

PDF(683 KB)
PDF(683 KB)
Strategic Study of CAE ›› 2022, Vol. 24 ›› Issue (1) : 46-54. DOI: 10.15302/J-SSCAE-2022.01.005
Research on Agricultural Development Strategy in China by 2050
Orginal Article

Developing from Mechanized to Smart Agricultural Production in China

Author information +
History +

Abstract

The mode transformation of agricultural production is a common concern for China and worldwide. Currently, the level of mechanization has been significantly promoted for the agriculture sector in China and smart production becomes an inevitable trend for modern agriculture. Smart agriculture regards data, knowledge, and intelligent equipment as the core elements and integrates modern science and technology with agriculture to realize digital perception, intelligent decision-making, precise operation, and smart management in the entire process of agricultural production, thereby greatly improving labor productivity, resource utilization rate, and land output rate. This article presents the current status of agricultural production in China using rice production as an example, and analyzes the necessity, opportunities, challenges, directions, and route for the intelligent transformation of China’s agriculture. Furthermore, we propose policy suggestions to promote the intelligent development of China’s agricultural production, including (1) strengthening the research and innovation system for agricultural machinery, (2) improving the agricultural machinery promotion system, (3) optimizing the socialized service system for agricultural machinery, and (4) accelerating the construction of smart agriculture demonstration zones.

Keywords

agricultural production / rice production / agricultural mechanization / information technology / intelligent agricultural machinery / smart agricultural production

Cite this article

Download citation ▾
Xiwen Luo, Juan Liao, Ying Zang, Yinggang Ou, Pei Wang. Developing from Mechanized to Smart Agricultural Production in China. Strategic Study of CAE, 2022, 24(1): 46‒54 https://doi.org/10.15302/J-SSCAE-2022.01.005

References

[1]
中国科学院农业领域战略研究组. 中国至2050年农业科技发展 路线图 [M]. 北京: 科学出版社, 2009. Strategy Study Group of Agriculture of Chinese Academy of Sciences. China’s agricultural science and technology development roadmap to 2050 [M]. Beijing: Science Press, 2009.
[2]
孙锡庚, 张建设. 激光平地技术 [J]. 中国农业信息快讯, 2001 (5): 40. Sun X G, Zhang J S. Laser leveling technology [J]. China’s Agricultural Information News, 2001 (5): 40.
[3]
刘刚, 司永胜, 林建涵, 等. 激光平地控制器的开发与农田试验 分析 [C]. 广州: 2005年中国农业工程学会学术年会, 2005. Liu G, Si Y S, Lin J H, et al. Development and experiment analysis of the controller for laser leveling system [C]. Guangzhou: 2005 Annual Conference of Chinese Society of Agricultural Engineering, 2005.
[4]
胡炼, 杜攀, 罗锡文, 等. 悬挂式多轮支撑旱地激光平地机设计 与试验 [J]. 农业机械学报, 2019, 50(8): 15–21. Hu L, Du P, Luo X W, et al. Design and experiment on multiwheel support laser land leveler hanging on tractor [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 15–21.
[5]
孟志军, 付卫强, 武广伟, 等. 激光接收器自动升降式平地机的 研制与试验分析 [J]. 江苏大学学报(自然科学版), 2015, 36(4): 418–424. Meng Z J, Fu W Q, Wu G W, et al. Development and evaluation of laser land leveling machine with automatic lifting laser receiver [J]. Journal of Jiangsu University(Natural Science Edition), 2015, 36(4): 418–424.
[6]
胡炼, 唐灵茂, 罗锡文, 等. 一种农田三维地形实时测量装置和方 法: CN110174682B [P/OL]. (2021-03-26) [2021-12-18]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2021&-filename=CN110174682B&uniplatform=NZKPT&v=Af-dpDcjFep5muV2LfrjLC4NHHZKn80KbZ9KS15KWOD8dbA9BfBlCdgxj6oEIeXp. Hu L, Tang L M, Luo X W, et al. A real-time measuring device and method for farmland three-dimensional terrain: CN110174682B [P/OL]. (2021-03-26)[2021-12-18]. https://kns.cnki.net/kcms/detail/ detail.aspx?dbcode=SCPD&dbname=SCPD2021&filename=CN110174682B&uniplatform=NZKPT&v=Af-dpDcjFep5muV2LfrjLC4NHHZKn80KbZ9KS15KWOD8dbA9BfBlCdgxj6oEIeXp.
[7]
罗锡文. 水稻机械化精量穴直播技术要点 [J]. 温州农业科技, 2019 (1): 26. Luo X W. Key points of precision hole direct seeding technique for rice mechanization [J]. Wenzhou Agricultural Science and Technology, 2019 (1): 26.
[8]
王炜. 精准自动化灌溉系统设计及应用探讨 [J]. 陕西水利, 2020 (4): 77–79. Wang W. Design and application of precise automatic irrigation system [J]. Shaanxi Water Resources, 2020 (4): 77–79.
[9]
徐刚, 陈立平, 张瑞瑞, 等. 基于精准灌溉的农业物联网应用研 究 [J]. 计算机研究与发展, 2010, 47(S2): 333–337. Xu G, Chen L P, Zhang R R, et al. Application research of agricultural Internet of things based on precision irrigation [J]. Journal of Computer Research and Development, 2010, 47(S2): 333–337.
[10]
伟利国, 张小超, 苑严伟, 等. 2F-6-BP1型变量配肥施肥机的研 制与试验 [J]. 农业工程学报, 2012, 28(7): 14–18. Wei L G, Zhang X C, Yuan Y W, et al. Design and experiment of 2F-6-BP1 variable rate assorted fertilizer applicator [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7): 14–18.
[11]
安晓飞, 付卫强, 王培, 等. 小麦种行肥行精准拟合变量施肥控 制系统研究 [J]. 农业机械学报, 2019, 50(S1): 96–101. An X F, Fu W Q, Wang P, et al. Development of variable rate fertilization control system based on matching fertilizer line and seed line of wheat [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 96–101.
[12]
乔白羽, 何雄奎, 王志翀, 等. 基于LiDAR扫描的高地隙宽幅喷 雾机变量施药系统研制 [J]. 农业工程学报, 2020, 36(14): 89–95. Qiao B Y, He X K, Wang Z C, et al. Development of variable-rate spraying system for high clearance wide boom sprayer based on LiDAR scanning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 89–95.
[13]
苏天生, 韩增德, 崔俊伟, 等. 谷物联合收割机清选装置研究现 状及发展趋势 [J]. 农机化研究, 2016 (2): 6–11. Su T S, Han Z D, Cui J W, et al. Research status and development trend of cleaning unit of cereal combine harvesters [J]. Journal of Agricultural Mechanization Research, 2016 (2): 6–11.
[14]
罗乔军. 稻谷热泵干燥系统设计与能效评价研究 [D]. 广州: 华 南农业大学(博士学位论文), 2017. Luo Q J. Design of rice drying system with heat pump and energy efficiency evaluation [D]. Guangzhou: South China Agricultural University(Doctorial dissertation), 2017.
[15]
郑先哲, 刘辉, 沈柳杨, 等. 基于玻璃化转变的稻谷变温热风干 燥工艺研究 [J]. 农业机械学报, 2020, 51(1): 331–340. Zheng X Z, Liu H, Shen L Y, et al. Hot-air drying technology of changing temperature for paddy rice based on glass transition theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 331–340.
[16]
国家统计局. 全国人口统计[EB/OL]. (2021-10-20)[2021-12-18]. https://data.stats.gov.cn/easyquery.htm?cn=C01. National Bureau of Statistics. National population statistics [EB/ OL]. (2021-10-20)[2021-12-18]. https://data.stats.gov.cn/easyquery.htm?cn=C01.
[17]
罗锡文. 农业机械化生产学 [M]. 北京: 中国农业出版社, 2019. Luo X W. Agricultural mechanization production [M]. Beijing: China Agriculture Press, 2019.
[18]
戈大专, 龙花楼, 杨忍. 中国耕地利用转型格局及驱动因素 研究——基于人均耕地面积视角 [J]. 资源科学, 2018, 40(2): 273–283. Ge D Z, Long H L, Yang R. The pattern and mechanism of farmland transition in China from the perspective of per capita farmland area [J]. Resources Science, 2018, 40(2): 273–283.
[19]
白由路. 高效施肥技术研究的现状与展望 [J]. 中国农业科学, 2018, 51(11): 2116–2125. Bai Y L. The situation and prospect of research on efficient fertilization [J]. Scientia Agricultura Sinica, 2018, 51(11): 2116–2125.
[20]
罗锡文, 廖娟, 臧英, 等. 提高农业机械化水平促进农业可持续 发展 [J]. 农业工程学报, 2016, 32(1): 1–11. Luo X W, Liao J, Zang Y, et al. Improving agricultural mechanization level to promote agricultural sustainable development [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 1–11.
[21]
何雄奎. 植保精准施药技术装备 [J]. 农业工程技术, 2017, 37(30): 22–26. He X K. Plant protection precision pesticide application technology equipment [J]. Agricultural Engineering Technology, 2017, 37(30): 22–26.
[22]
中国农业科学院, 中国农业绿色发展研究会. 中国农业绿色发 展报告2020 [M]. 北京: 中国农业出版社, 2021. Chinese Academy of Agricultural Sciences, China Agricultural Green Development Research Society. China agriculture green development report 2020 [M]. Beijing: China Agriculture Press, 2021.
[23]
林而达. 气候变化与农业可持续发展 [M]. 北京: 北京出版社, 2001. Lin E D. Climate change and sustainable agricultural development [M]. Beijing: Beijing Publishing House, 2001.
[24]
李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分 解 [J]. 中国人口•资源与环境, 2011, 21(8): 80–86. Li B, Zhang J B, Li H P. Research on spatial-temporal characteristics and afecting factors decomposition of agricultural carbon emission in China [J]. China Population, Resources and Environment, 2011, 21(8): 80–86.
[25]
Tubiello F N, Salvatore M, Cóndor Golec R D, et al. Agriculture, forestry and other land use emissions by sources and removals by sinks: 1990—2011 analysis [EB/OL]. (2014-03-18)[2021-12-18]. https://www.fao.org/3/i3671e/i3671e.pdf.
[26]
冉光和, 王建洪, 王定祥. 我国现代农业生产的碳排放变动趋势 研究 [J]. 农业经济问题, 2011, 32(2): 32–38. Ran G H, Wang J H, Wang D X. Study on the changing tendency and counter-measures of carbon emission produced by agricultural production in China [J]. Issues in Agricultural Economy, 2011, 32(2): 32–38.
[27]
Burns R T, Spajić R, Kralik D, et al. Overview of United States and European Union manure management and application regulations [C]. Chongqing: Animal Environment and Welfare: Proceedings of International, 2015.
[28]
央视网. “十三五”农业农村发展取得历史性成就 [EB/OL]. (2020-10-28)[2021-10-17]. https://news.cctv.com/2020/10/28/ARTIcnv5FrbtGDEYqNAIh0mR201028.shtml?spm=C94212. P4YnMod9m2uD.ENPMkWvfnaiV.37. CCTV Net. Historic achievements were made in agriculture and rural development during the 13th Five-Year Plan Period [EB/OL]. (2020-10-28)[2021-10-17]. https://news.cctv.com/2020/10/28/ARTIcnv5FrbtGDEYqNAIh0mR201028.shtml?spm=C94212.P4YnMod9m2uD.ENPMkWvfnaiV.37.
[29]
刘宏杰. 中国财政支农支出对第一产业增加值的影响研究: 1952—2006 [J]. 华南农业大学学报(社会科学版), 2008, 7(3): 41–48. Liu H J. An analysis on the economic effect of government expenditure for supporting agriculture on the value added of the primary industry: 1952—2006 [J]. Journal of South China Agricultural University(Social Science Edition), 2008, 7(3): 41–48.
[30]
国家统计局. 国家财政主要支出项目 [EB/OL]. (2021-10-20) [2021-12-20]. https://data.stats.gov.cn/easyquery.htm?cn=C01. National Bureau of Statistics. Major expenditure items of state finance [EB/OL]. (2021-10-20)[2021-12-20]. https://data.stats.gov. cn/easyquery.htm?cn=C01.
[31]
赵春江. 把信息化融进农机发展的各个环节 [J]. 中国农村科技, 2019 (6): 6. Zhao C J. Integrate informatization into each link of agricultural machinery development [J]. China Rural Science & Technology, 2019 (6): 6.
[32]
杨航, 黄振叠, 陈康. 浅谈农机信息化的现状与展望 [J]. 现代农 机, 2020 (2): 7–8. Yang H, Huang Z D, Kang C. The present situation and prospect of agricultural machinery informatization [J]. Agricultural Mechanization and Modernization, 2020 (2): 7–8.
Funding
Chinese Academy of Engineering project “Research on China’s Agricultural Development Strategy 2050” (2018-ZD-07)
AI Summary AI Mindmap
PDF(683 KB)

Accesses

Citations

Detail

Sections
Recommended

/