
Development Strategy for the Core Chip Technology of Intelligent Robot in China
Yang Mo, Yaonan Wang, Jie Liu, Zhiqiang Miao, Xin Zhang, Weilai Jiang
Strategic Study of CAE ›› 2022, Vol. 24 ›› Issue (4) : 62-73.
Development Strategy for the Core Chip Technology of Intelligent Robot in China
Intelligent robots are leading a new round of technological revolution and industrial transformation. Promoting the intelligent robot core chip technology and industry is strategically significant for industrial upgrading and productivity improvement in China. In this study, we illustrate the strategic significance of the intelligent robot core chip technology in China in promoting technological independence, realizing high-quality economic development, satisfying residents’ need for a better life, and promoting a nation’s core competitiveness. Additionally, we review the development status of chips for intelligent robots in terms of policy, technology, and industry, and analyze the advantages and problems of developing intelligent robot chips in China. On this basis, the development route of intelligent robot chips is analyzed, and the development strategic goals of intelligent robot chip technology for 2025, 2030, and 2035 are proposed. Moreover, we propose the key tasks and strategic goals of intelligent robot core chips in China. We suggest that the independent and controllable development of intelligent robot chips should be elevated to a national strategy; major scientific and technological projects should be established for intelligent robot chips; policies should be introduced to encourage intelligent robot chip technology research and industrial applications; and high-level talent training should be implemented.
intelligent robot / chip technology / industrial chain / independently controllable / development roadmap
[1] |
高蕾 , 符永铨 , 李东升 , 等 . 我国人工智能核心软硬件发展战略研究 [J]. 中国工程科学 , 2021 , 23 3 : 90 ‒ 97 .
|
[2] |
黄强 , 孟非 , 余张国 , 等 . 陆空协同多模态智能机器人系统发展战略研究 [J]. 中国工程科学 , 2021 , 23 5 : 116 ‒ 121 .
|
[3] |
商惠敏 . 人工智能芯片产业技术发展研究 [J]. 全球科技经济瞭望 , 2021 , 36 12 : 24 ‒ 30 .
|
[4] |
"先进半导体材料及辅助材料"编写组 . 中国先进半导体材料及辅助材料发展战略研究 [J]. 中国工程科学 , 2020 , 22 5 : 10 ‒ 19 .
|
[5] |
中华人民共和国工业和信息化部 . 十五部门关于印发《"十四五"机器人产业发展规划》的通知 [EBOL]. 2021-12-21 [ 2022-03-23 ]. http:www.gov.cnzhengcezhengceku2021-1228content_5664988.htm .
|
[6] |
Murray S, Floyd-Jones W, Qi Y, et al. Robot motion planning on a Chip [C]. Ann Arbor: Robotics: Science and Systems, 2016.
|
[7] |
王耀南 . 人工智能赋能无人系统 [J]. 智能系统学报 , 2021 , 16 1 : 6 .
|
[8] |
Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid tianjic chip architecture [J]. Nature, 2019, 572(7767): 106‒111.
|
[9] |
Liu Y, Duan X, Shin H J, et al. Promises and prospects of two-dimensional transistors [J]. Nature, 2021, 591(7848): 43‒53.
|
[10] |
Mirhoseini A, Goldie A, Yazgan M, et al. A graph placement methodology for fast chip design [J]. Nature, 2021, 594(7862): 207‒212.
|
[11] |
前瞻产业研究院. 2020年中国半导体设备行业市场研究报告 [R]. 深圳: 前瞻产业研究院, 2020.Prospective Industry Research Institute. Market research report of Chinese semiconductor equipment industry in 2020 [R]. Shenzhen: Prospective Industry Research Institute, 2020.
|
[12] |
中国电子学会. 2021年中国机器人产业发展报告 [R]. 北京: 中国电子学会, 2021.Chinese Institute of Electronics. Development report of Chinese robot industry in 2021 [R]. Beijing: Chinese Institute of Electronics, 2021.
|
[13] |
陶建华 , 陈云霁 . 类脑计算芯片与类脑智能机器人发展现状与思考 [J]. 中国科学院院刊 , 2016 , 31 7 : 803 ‒ 811 .
|
[14] |
Lung H L. AI: From deep learning to in-memory computing [C]. San Jose: Conference on Metrology, Inspection, and Process Control for Microlithography, 2019.
|
[15] |
Hung J M, Li X, Wu J, et al. Challenges and trends in developing nonvolatile memory-enabled computing chips for intelligent edge devices [J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1444‒1453.
|
[16] |
林钰登 , 高滨 , 王小虎 , 等 . 基于新型忆阻器的存内计算 [J]. 微纳电子与智能制造 , 2019 , 1 2 : 35 ‒ 46 .
|
[17] |
Yao P, Wu H Q, Gao B, et al. Fully hardware-implemented memristor convolutional neural network [J]. Nature, 2020, 577(7792): 641‒646.
|
[18] |
Le Gallo M, Sebastian A, Mathis R, et al. Mixed-precision in-memory computing [J]. Nature Electronics, 2018, 1(4): 246‒253.
|
[19] |
Wu P, Su J W, Chung Y L, et al. A 28nm 1Mb time-domain computing-in-memory 6T SRAM macro with 6.6ns latency 1241 GOPS and 37.01 TOPS/W for 8b-MAC operations for Edge-AI devices [C]. Beijing: IEEE International Solid-State Circuits Conference, 2022: 190‒192.
|
[20] |
国务院办公厅 . 国务院办公厅关于印发新时期促进集成电路产业和软件产业高质量发展若干政策的通知 [EBOL]. 2020-08-04 [ 2022-03-23 ]. http:www.gov.cnzhengcecontent2020-0804content_5532370.htm .
|
/
〈 |
|
〉 |