
Research Status and Future Development of Cooling Technologies for Green and Energy-Efficient Data Centers
Xintuo Chen, Liyang Zhou, Chengbin Zhang, Shuhua Wang, Liangliang Zhang, Jianfeng Chen
Strategic Study of CAE ›› 2022, Vol. 24 ›› Issue (4) : 94-104.
Research Status and Future Development of Cooling Technologies for Green and Energy-Efficient Data Centers
Data centers are important infrastructure in China, with constantly increasing industry size, market revenues, and electricity consumption. The major cooling systems of data centers currently in operation in China are air-cooled, with a low energy utilization rate and great potentials for energy saving. Therefore, it is imperative to develop novel cooling technologies for green and energyefficient data centers. The cooling technology needs to solve two problems. First, as equipment heat production increases, the cooling capacity of the cooling system needs to be improved to match heat production and transfer rates. Second, to address the low energy efficiency problem, green and energy-efficient cooling technologies with industrial application prospects need to be developed. This study reviews the development status of data center cooling methods and categorizes cooling technologies into air conditioner cooling, fresh air cooling, indirect cooling, direct single-phase liquid cooling, and direct two-phase liquid cooling. We analyze the development trends of cooling technologies and suggest that green and high-efficient data centers should focus on the improvement in the efficiency of cooling systems, optimizations of hot and cold fluid channels, applications of new liquid cooling materials, and promotion of heat recovery systems. Furthermore, we propose suggestions for the stable and orderly development of the data center industry from the aspects of optimizing top-level design, developing key technologies, formulating scientific standards, improving industrial layout, and focusing on energy structure.
data center / green and energy saving / cooling method / liquid cooling
[1] |
中国信息通信研究院 . 数据中心白皮书2022年 [R]. 北京 : 中国信息通信研究院 , 2022 .
|
[2] |
Lu T, Lyu X S, Remes M, et al. Investigation of air management and energy performance in a data center in Finland: Case study [J]. Energy & Buildings, 2011, 43(12): 3360‒3372.
|
[3] |
季晓莉 . 生态绿色发展 : 发电装机越来越清洁, 数据中心越来越节能 [NOL]. 中国经济导报. 2021-07-29 [ 2022-05-02 ]. http:www.chinadevelopment.com.cnnewsny2021071737167.shtml .
|
[4] |
Bao K L, Wang X H, Fang Y B, et al. Effects of the surfactant solution on the performance of the pulsating heat pipe [J]. Applied Thermal Engineering, 2020, 178: 115678.
|
[5] |
赛迪顾问股份有限公司 . 中国液冷数据中心发展白皮书 [EBOL]. 2020-12-05 [ 2022-04-15 ]. http:www.ysdjc.cnPrivateFiles202101076374561177902446434712543.pdf .
|
[6] |
朱永忠 . 数据中心制冷技术的应用及发展 [J]. 工程建设标准化 , 2015 8 : 62 ‒ 66 .
|
[7] |
景传刚 , 李楠 , 宋晓伟 . 不同功率密度机柜对数据中心的影响分析 [J]. 通信电源技术 , 2019 , 36 10 : 4 .
|
[8] |
成彬 , 王涛 , 武红光 , 等 . 中国电信数据中心节能减排的策略及其应用 [J]. 节能 , 2012 , 31 1 : 4 ‒ 8 .
|
[9] |
Garimella S V, Yeh L T, Persoons T. Thermal management challenges in telecommunication systems and data centers [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(8): 1307‒1316.
|
[10] |
Liu Y, Guan R B, Jing M, et al. Research of data center fresh air ventilation cooling system [J]. Lecture Notes in Electrical Engineering, 2014, 262: 299‒306.
|
[11] |
Geng H Y. Data center handbook [M]. Hoboken: John Wiley & Sons, 2014.
|
[12] |
Tuma P E. The merits of open bath immersion cooling of datacom equipment [C]. Santa Clara: Proceedings of the 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2010.
|
[13] |
ELLSWORTH M J. Flow network analysis of the IBM Power 775 supercomputer Water Cooling System [C]. Orlando: Proceedings of the 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2014.
|
[14] |
肖新文 . 直接接触冷板式液冷冷却数据中心的热回收探讨 [J]. 建筑节能 , 2020 , 48 2 : 69 ‒ 73 .
|
[15] |
谢丽娜 , 郭亮 . 对液冷技术及其发展的探讨 [J]. 信息通信技术与政策 , 2019 , 296 2 : 29 ‒ 32 .
|
[16] |
Han X H, Wang X H, Zheng H C, et al. Review of the development of pulsating heat pipe for heat dissipation [J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692‒709.
|
[17] |
Kheirabadi A C, Groulx D. Cooling of server electronics: A design review of existing technology [J]. Applied Thermal Engineering, 2016, 105: 622‒638.
|
[18] |
Mcglen R J, Jachuck R, Lin S. Integrated thermal management techniques for high power electronic devices [J]. Applied Thermal Engineering, 2004, 24(8‒9): 1143‒1156.
|
[19] |
郑思明 . 热管技术在数据中心冷却系统中的应用 [J]. 绿色科技 , 2019 24 : 187 ‒ 188 .
|
[20] |
田浩 , 李震 . 基于环路热管技术的数据中心分布式冷却方案及其应用 [J]. 世界电信 , 2011 10 : 48 ‒ 52 .
|
[21] |
EL-GENK M S. Immersion cooling nucleate boiling of high power computer chips [J]. Energy Conversion & Management, 2012, 53(1): 205‒218.
|
[22] |
钟杨帆 , 郭锐 , 张京 , 等 . 基于电子氟化液的单相浸没液冷服务器长期可靠性评估 [J]. 中国电信业 , 2021 S1 : 55 ‒ 60 .
|
[23] |
Park J E, Thome J R. Critical heat flux in multi-microchannel copper elements with low pressure refrigerants [J]. International Journal of Heat & Mass Transfer, 2010, 53(1‒3): 110‒122.
|
[24] |
Kim J. Spray cooling heat transfer: The state of the art [J]. International Journal of Heat & Fluid Flow, 2007, 28(4): 753‒767.
|
[25] |
Guo D, Wei J J, Zhang Y H. Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces [J]. Applied Thermal Engineering, 2011, 31(11‒12): 2042‒2051.
|
[26] |
Johnston A, Stone D, Cader T. SprayCool command post platform for harsh military environments [C]. San Jose: 2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2008.
|
[27] |
Qiu L, Dubey S, Choo F H, et al. Recent developments of jet impingement nucleate boiling [J]. International Journal of Heat and Mass Transfer, 2015, 89: 42‒58.
|
[28] |
刘绍彦 , 阮琳 , 康玉慧 . 喷雾冷却轴线处的雾化特性的 实验研究与数值分析 [J]. 科学技术与工程 , 2018 2 : 225 ‒ 229 .
|
[29] |
Yang J, Chow L C, Paris M R. Nucleate boiling heat transfer in spray cooling [J]. Journal Heat Transfer, 1996, 118(3): 668‒671.
|
[30] |
Silk E A, Golliher E L, Selvam R P. Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application [J]. Energy Conversion & Management, 2008, 49(3): 453‒468.
|
[31] |
Rasmussen N. An improved architecture for high-efficiency, high-density data centers [J]. Green Grid White Paper, 2008, 126: 1‒25.
|
[32] |
Joshi Y, Kumar P. Energy efficient thermal management of data centers [M]. Boston: Springer, 2012.
|
[33] |
Takahashi M, Uekusa T, Kishita M, et al. Aisle-capping method for airflow design in data centers [C]. San Diego: proceedings of the Telecommunications Energy Conference, 2008.
|
[34] |
Bash C E, Patel C D, Sharma R K. Efficient thermal management of data centers—Immediate and long-term research needs [J]. Hvac & R Research, 2003, 9(2): 137‒152.
|
[35] |
Ayou D S, Bruno J C, Saravanan R, et al. An overview of combined absorption power and cooling cycles [J]. Renewable & Sustainable Energy Reviews, 2013, 21: 728‒748.
|
[36] |
Brunschwiler T, Smith B, Ruetsche E, et al. Toward zero-emission data centers through direct reuse of thermal energy [J]. IBM Journal of Research and Development, 2009, 53(3):1‒13.
|
[37] |
Ebrahimi K, Jones G F, Fleischer A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities [J]. Renewable & Sustainable Energy Reviews, 2014, 31(2): 622‒638.
|
[38] |
孙翠锋 , 张琳 . 数据中心服务器技术发展趋势与应用 [J]. 通信世界 , 2021 10 : 37 ‒ 38 .
|
/
〈 |
|
〉 |