Current Status and Future Development of Quantum Computation

Xiaowei Li, Xiang Fu, Fei Yan, Youpeng Zhong, Chaoyang Lu, Junhua Zhang, Yu He, Shi Yu, Dawei Lu, Tao Xin, Jilei Chen, Benchuan Lin, Zhensheng Zhang, Song Liu, Yuanzhen Chen, Dapeng Yu

Strategic Study of CAE ›› 2022, Vol. 24 ›› Issue (4) : 133-144.

PDF(997 KB)
PDF(997 KB)
Strategic Study of CAE ›› 2022, Vol. 24 ›› Issue (4) : 133-144. DOI: 10.15302/J-SSCAE-2022.04.016
Development Strategy for Engineering Application of Quantum Information Technology
Orginal Article

Current Status and Future Development of Quantum Computation

Author information +
History +

Abstract

Quantum computation, as part of the broader field of quantum information, represents an assembly of concepts and techniques that concern the nature and processing of information based on quantum mechanics. Quantum computation utilizes unique resources such as quantum superposition and quantum entanglement to encode and process information and has been proved to be dominantly advantageous over classical computation on certain important scientific and engineering problems. Potential applications of quantum computation are expected to influence future information technology and many other related fields deeply and significantly. In this article, we briefly review the history of quantum computation, including how its fundamental ideas and concepts came into being and the development of its significant theories and algorithms. We also discuss the status and outlook of several representative technical routes in this field, including superconducting quantum computation, distributed superconducting quantum computation, photonic quantum computation, trapped-ion quantum computation, silicon-based quantum computation, as well as other systems. Furthermore, by analyzing certain common issues faced by all routes, we propose some thoughts and suggestions for future development of quantum computation in China. We particularly emphasize the following: reinforcement of strategic planning at a national level, establishment of a research team of high caliber, and boost of relevant fundamental research and development of core techniques and critical instruments.

Keywords

quantum computation / quantum algorithm / control system of quantum computation / quantum software / superconducting quantum computation / distributed quantum computation / trapped-ion quantum computation / silicon-based quantum computation / photonic quantum computation / neutral atom quantum computation / nitrogen-vacancy color center in diamond / nuclear magnetic resonance quantum computation / quantum computation with spin wave / topological quantum computation

Cite this article

Download citation ▾
Xiaowei Li, Xiang Fu, Fei Yan, Youpeng Zhong, Chaoyang Lu, Junhua Zhang, Yu He, Shi Yu, Dawei Lu, Tao Xin, Jilei Chen, Benchuan Lin, Zhensheng Zhang, Song Liu, Yuanzhen Chen, Dapeng Yu. Current Status and Future Development of Quantum Computation. Strategic Study of CAE, 2022, 24(4): 133‒144 https://doi.org/10.15302/J-SSCAE-2022.04.016

References

[1]
Preskill J. Quantum computing 40 years later [EB/OL]. (2021-06-19)[2022-05-15]. https: //arxiv.org/abs/2106.10522.
[2]
Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [C]. Santa Fe: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994.
[3]
Preskill J. Quantum computing in the NISQ era and beyond [J]. Quantum, 2018, 2: 79.
[4]
Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1985, 400(1818): 97‒117.
[5]
Deutsch D. Quantum computational networks [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1989, 425(1868): 73‒90.
[6]
Yao A C C. Quantum circuit complexity [C]. Palo Alto: Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, 1993.
[7]
Bernstein E, Vazirani U. Quantum complexity theory [J]. SIAM Journal on Computing, 1993, 26(5): 11‒20.
[8]
Grover L K. A fast quantum mechanical algorithm for database search [C]. Philadelphia: Proceedings of the 28th annual ACM Symposium on Theory of Computing, 1996.
[9]
Lloyd S. Universal quantum simulators [J]. Science, 1996, 273(5278): 1073‒1078.
[10]
Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, 103: 1‒5.
[11]
Panella M, Martinelli G. Neural networks with quantum architecture and quantum learning [J]. International Journal of Circuit Theory and Applications, 2011, 39(1): 61‒77.
[12]
Huang H Y, Broughton M, Cotler J, et al. Quantum advantage in learning from experiments [J]. Science, 2022, 376(6598): 1182‒1186.
[13]
Peruzzo A, McClean, J, Shadbolt P, et al. A variational eigenvalue solver on a photonic quantum processor [J]. Nature Communications, 2014, 5: 1‒7.
[14]
Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm [EB/OL]. (2014-11-14)[2022-05-15]. https://arxiv.org/abs/1411.4028.
[15]
Ying M S. Foundations of quantum programming [M]. San Mateo: Morgan Kaufmann Publishers Inc., 2016.
[16]
Fu X, Yu J T, Su X, et al. Quingo: A programming framework for heterogeneous quantum-classical computing with NISQ features [J]. ACM Transactions on Quantum Computing, 2021, 2(4): 1‒37.
[17]
Guo J Z, Lou H Z, Li R L, et al. isQ: Towards a practical software stack for quantum programming [EB/OL] (2022-05-08)[2022-05-15]. https: //arxiv.org/abs/2205.03866.
[18]
Fu X, Rol M A, Bultink C C, et al. An experimental microarchitecture for a superconducting quantum processor [C]. Boston: 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017.
[19]
Zhang M Y, Xie L, Zhang Z X, et al. Exploiting different levels of parallelism in the quantum control microarchitecture for superconducting oubit [C]. Chicago: 54th Annual IEEE/ACM International Symposium on Microarchitecture, 2021.
[20]
Kwon S, Tomonaga A, Bhai G L, et al. Tutorial: Gate-based superconducting quantum computing [J]. Journal of Applied Physics, 2021, 129: 1‒12.
[21]
Yan F, Krantz P, Sung Y K, et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates [J]. Physical Review Applied, 2018, 10(5): 1‒15.
[22]
Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor [J]. Nature, 2019, 574: 505‒510.
[23]
Wu Y L, Bao W S, Cao S R, et al. Strong quantum computational advantage using a superconducting quantum processor [J]. Physical Review Letters, 2021, 127: 1‒15.
[24]
Place A P M, Rodgers L V H, Mundada P, et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds [J]. Nature Communications, 2021, 12: 1‒6.
[25]
Wang C L, Li X G, Xu H K, et al. Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds [J]. npj Quantum Information, 2022, 8: 1‒6.
[26]
Sung Y K, Ding L, Braumuller J, et al. Realization of high-fidelity cz and z z-free iSWAP gates with a tunable coupler [J]. Physical Review X, 2021, 11(2): 1‒12.
[27]
Stehlik J, Zajac D M, Underwood, D L, et al. Tunable coupling architecture for fixed-frequency transmon superconducting qubits [J]. Physical Review Letters, 2021, 127: 1‒6.
[28]
Andersen C K, Remm A, Lazar S, et al. Repeated quantum error detection in a surface code [J]. Nature Physics, 2020, 16: 875‒880.
[29]
Krinner S, Lacroix N, Remm A, et al. Realizing repeated quantum error correction in a distance-three surface code [J]. Nature, 2022, 605: 669‒674.
[30]
Zhong Y P, Chang H S, Satzinger K J, et al. Violating Bell´s inequality with remotely connected superconducting qubits [J]. Nature Physics, 2019, 15: 741‒744.
[31]
Kurpiers P, Magnard P, Walter T, et al. Deterministic quantum state transfer and remote entanglement using microwave photons [J]. Nature, 2018, 558: 264‒267.
[32]
Magnard P, Storz S, Kurpiers P, et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems [J]. Physical Review Letters, 2020, 125: 1‒6.
[33]
Zhong Y P, Chang H S, Bienfait A, et al. Deterministic multi-qubit entanglement in a quantum network [J]. Nature, 2021, 590: 571‒575.
[34]
He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability [J]. Nature Nanotechnology, 2013, 8: 213‒217.
[35]
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics [J]. Nature, 2001, 409: 46‒52.
[36]
Pelucchi E, Fagas G, Aharonovich I, et al. The potential and global outlook of integrated photonics for quantum technologies [J]. Nature Reviews Physics, 2022, 4: 194‒208.
[37]
Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460‒1463.
[38]
Zhong H S, Deng Y H, Qin J, et al. Phase-programmable gaussian boson sampling using stimulated squeezed light [J]. Physical Review Letters, 2021, 127: 1‒14.
[39]
Madsen L S, Laudenbach F, Askarani, M F, et al. Quantum computational advantage with a programmable photonic processor [J]. Nature, 2022, 606: 75‒81.
[40]
Cirac J I, Zoller P. Quantum computations with cold trapped ions [J]. Physical Review Letters, 1995, 74: 4091‒4094.
[41]
Linke N M, Maslov D, Roetteler M, et al. Experimental comparison of two quantum computing architectures [J] Proceedings of the National Academy of Sciences, 2017, 114(13): 3305‒3310.
[42]
Wang P F, Luan C Y, Qiao M, et al. Single ion qubit with estimated coherence time exceeding one hour [J]. Nature Communication, 2021, 12: 1‒5.
[43]
Gaebler J P, Tan T R, Lin Y, et al. High-fidelity universal gate set for 9Be+ ion qubits [J]. Physical Review Letters, 2016, 117: 1‒5.
[44]
Kielpinski D, Monroe C, Wineland D J, et al. Architecture for a large-scale ion-trap quantum computer [J]. Nature, 2002, 417: 709‒711.
[45]
Zwanenburg F A, Dzurak A S, Morello A, et al. Silicon quantum electronics [J]. Reviews of Modern Physics, 2013, 85(3): 961.
[46]
Veldhorst M, Eenink H G J, Yang C H, et al. Silicon CMOS architecture for a spin-based quantum computer [J]. Nature Communications, 2017, 8: 1‒5.
[47]
Huang W, Yang C H, Chan K W, et al. Fidelity benchmarks for two-qubit gates in silicon [J]. Nature, 2019, 569: 532‒536.
[48]
Watson T F, Philips S G J, Kawakami E, et al. A programmable two-qubit quantum processor in silicon [J]. Nature, 2018, 555: 633‒637.
[49]
He Y, Gorman S K, Kranz D, et al. A two-qubit gate between phosphorus donor electrons in silicon [J]. Nature, 2019, 571: 371‒375.
[50]
Philips S G J, Mądzik M T, Amitonov S V, et al. Universal control of a six-qubit quantum processor in silicon [EB/OL]. (2022-02-18)[2022-05-15]. https: //arxiv.org/abs/2202.09252.
[51]
Yang C H, Leon R C C, Hwang J C C, et al. Operation of a silicon quantum processor unit cell above one kelvin [J]. Nature, 2020, 580: 350‒354.
[52]
Petit L, Eenink H G J, Russ M, et al. Universal quantum logic in hot silicon qubits [J]. Nature, 2020, 580: 355‒359.
[53]
Xue X, Patra B, Dijk J P G, et al. CMOS-based cryogenic control of silicon quantum circuits [J]. Nature, 2021, 593: 205‒210.
[54]
Browaeys A, Lahaye T. Many-body physics with individually controlled Rydberg atoms [J]. Nature Physics, 2020, 16: 132‒142.
[55]
Kaufman A M, Ni K K. Quantum science with optical tweezer arrays of ultracold atoms and molecules [J]. Nature Physics, 2021, 17: 1324‒1333.
[56]
Wehner S, Elkouss D, Hanson R. Quantum Internet: A vision for the road ahead [J]. Science, 2018, 362(6412): 1‒5.
[57]
Wu Y, Liu W Q, Geng J P, et al. Observation of parity-time symmetry breaking in a single-spin system [J]. Science, 2019, 364(6443): 878‒880.
[58]
Vandersypen L M K, Chuang I L. NMR techniques for quantum control and computation [J]. Reviews of Modern Physics, 2005, 76(4): 1037‒1040.
[59]
Li J, Luo Z H, Xin T, et al. Experimental implementation of efficient quantum pseudorandomness on a 12-spin system [J]. Physical Review Letters, 2019, 123(3): 1‒5.
[60]
Yuan H Y, Cao Y S, Kamra A, et al. Quantum magnonics: When magnon spintronics meets quantum information science [J]. Physics Reports, 2022, 965, 1‒74.
[61]
Lachance-Quirion D, Wolski S P, Tabuchi Y, et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit [J]. Science, 2020, 367(6476): 425‒428.
[62]
Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation [J]. Reviews of Modern Physics, 2008, 80: 1083‒1086.
Funding
Chinese Academy of Engineering project “Strategic Research on the Engineering Application of Quantum Information Technology” (2021-HYZD-01)
AI Summary AI Mindmap
PDF(997 KB)

Accesses

Citations

Detail

Sections
Recommended

/