
Research Progress and Future Development of Nonferrous Biomedical Materials
Shaokang Guan, Shijie Zhu, ZhengYufeng, Yunbing Wang, Xingdong Zhang
Strategic Study of CAE ›› 2023, Vol. 25 ›› Issue (1) : 104-112.
Research Progress and Future Development of Nonferrous Biomedical Materials
Nonferrous biomedical materials have developed rapidly in recent years. A variety of new nonferrous biomedical materials and devices that adapt to different in vivo environments and tissues have been developed. It is of both theoretical and practical values to make research plans to improve the clinical application level of new nonferrous biomedical materials and devices. This study clarifies the key performance requirements of the nonferrous biomedical materials, regarding corrosion resistance, wear resistance, fatigue strength and toughness, and biocompatibility. The research progress, development trend, and scientific issues of nonferrous medical materials for permanent implants, biodegradable nonferrous medical materials, porous nonferrous medical materials, and surface modification of nonferrous medical materials are reviewed. After summarizing the future research directions of various nonferrous biomedical materials, this study proposes the following development suggestions: (1) strengthening basic research and the development of key core technologies, (2) establishing a collaborative innovation community that integrates industry, education, research, medicine, and supervision, (3) formulating relevant standards and evaluation norms, and (4) developing a highly skilled professional training system, thereby providing a guiding reference for developing the new material industry and relevant cutting-edge technologies.
nonferrous biomedical materials / nonferrous materials for permanent implants / biodegradable nonferrous medical materials / porous nonferrous medical materials / surface modification of nonferrous medical materials
[1] |
Tu H L, Zhao H B , Fan Y Y, al et. Recent developments in nonferrous metals and related materials for biomedical applications in China: A review [J]. Rare Metals, 2022, 41(5): 1410‒1433.
|
[2] |
张文毓 . 生物医用金属材料研究现状与应用进展 [J]. 金属世界 , 2020 1 : 21 ‒ 27 .
|
[3] |
郑玉峰 , 杨宏韬 . 血管支架用可降解金属研究进展 [J]. 金属学报 , 2017 , 53 10 : 1127 ‒ 1137 .
|
[4] |
梁新杰 , 杨俊英 . 生物医用材料的研究现状与发展趋势 [J]. 新材料产业 , 2016 2 : 2 ‒ 5 .
|
[5] |
李崇崇 , 王健 , 王春仁 , 等 . 低模量钛合金骨科植入物材料研究进展 [J]. 中国药事 , 2019 , 33 11 : 1310 ‒ 1314 .
|
[6] |
Wang H, Song W, Liu M F, al et. Manufacture-friendly nanostructured metals stabilized by dual-phase honeycomb shell [J]. Nature Communications, 2022, 13: 2034.
|
[7] |
Chowdhury M A, HossainM D H, Hossain N, al et. Advances in coatings on Mg alloys and their anti-microbial activity for implant applications [J]. Arabian Journal of Chemistry, 2022, 15(11): 104214.
|
[8] |
Sánchez-Bodón J, del Olmo J A, Alonso J M, al et. Bioactive coatings on titanium: A review on hydroxylation, self-assembled monolayers (SAMs) and surface modification strategies [J]. Polymers, 2022, 14(1): 165.
|
[9] |
麻西群 , 于振涛 , 牛金龙 , 等 . 新型生物医用钛合金的设计及应用进展 [J]. 有色金属材料与工程 , 2018 , 39 6 : 26 ‒ 31 .
|
[10] |
Jawed S F, Rabadia C D, Khan M A, al et. Effect of alloying elements on the compressive mechanicalproperties of biomedical titanium alloys: A systematic review [J]. ACS Omega, 2022, 7(34): 29526-29542.
|
[11] |
V Dobromyslov A. Bainitictransformations in titanium alloys [J]. Physics of Metals and Metallography, 2021, 122: 237‒265.
|
[12] |
Iijima Y, Nagase T, Matsugaki A, al et. Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropyalloys for metallic biomaterials [J]. Materials & Design, 2021, 202: 109548.
|
[13] |
Nagase T, Iijima Y, Matsugaki A, al et. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials [J]. Materials Science & Engineering: C, 2020, 107: 110322.
|
[14] |
Bayode B L, Teffo M L, Tayler T, al et. Structural, mechanical and electrochemical properties of spark plasma sintered Ti-30Ta alloys [J]. Materials Science and Engineering: B, 2022, 283: 115826.
|
[15] |
Xu S H, Du M, Li J, al et. Bio-mimic Ti-Ta composite with hierarchical "brick-and-mortar" microstructure [J]. Materialia, 2019, 8: 100463.
|
[16] |
Mahmoudi P, Akbarpour M R, Laken H B, al et. Antibacterial Ti-Cu implants: A critical review on mechanisms of action [J]. Materials Today Bio, 2022, 17: 100447.
|
[17] |
Zhuang Y F, Ren L, Zhang S Y, al et. Antibacterial effect of a copper-containing titanium alloy againstimplant-associated infection induced by methicillin-resistantstaphylococcus aureus [J]. Acta Biomaterialia, 2021, 119: 472‒484.
|
[18] |
于佳莹 , 杨希祥 , 战德松 , 等 . Ti-Zr-Cu合金的抗菌性能和体外生物相容性 [J]. 材料研究学报 , 2021 , 35 11 : 873 ‒ 880 .
|
[19] |
任玲 , 杨春光 , 杨柯 . 抗菌医用金属材料的研究与发展 [J]. 中国医疗设备 , 2017 , 32 1 : 1 ‒ 6 .
|
[20] |
Williams D . 二十一世纪生物材料定义 [M]. 赵晚露译. 北京 : 科学出版社 , 2021 .
|
[21] |
郑玉峰 . 可降解金属研究前沿进展 [EBOL]. 2022-10-13 [ 2022-12-05 ]. https:kns.cnki.netkcmsdetail23.1345.TB.20221013.0855.002.html .
|
[22] |
王鲁宁 , 孟瑶 , 刘丽君 , 等 . 可降解锌基生物材料的研究进展 [J]. 金属学报 , 2017 , 53 10 : 1317 ‒ 1322 .
|
[23] |
郑玉峰 , 杨宏韬 . 锌基可降解金属研究进展与展望 [J]. 天津理工大学学报 , 2021 , 37 1 : 58 ‒ 64 .
|
[24] |
袁广银 , 牛佳林 . 可降解医用镁合金在骨修复应用中的研究进展 [J]. 金属学报 , 2017 , 53 10 : 1168 ‒ 1180 .
|
[25] |
东家慧 , 谭丽丽 , 杨柯 . 可降解镁基金属骨缺损修复材料的研究探索 [J]. 金属学报 , 2017 , 53 10 : 1197 ‒ 1206 .
|
[26] |
奚廷斐 , 魏利娜 , 刘婧 , 等 . 镁合金全降解血管支架研究进展 [J]. 金属学报 , 2017 , 53 10 : 1153 ‒ 1167 .
|
[27] |
张小农 , 左敏超 , 张绍翔 , 等 . 医用可降解血管支架临床研究进展 [J]. 金属学报 , 2017 , 53 10 : 1117 ‒ 1126 .
|
[28] |
Qin Y, Wen P, Guo H, al et. Additive manufacturing of biodegradable metals: Current research status and future perspectives [J]. Acta Biomaterialia, 2019, 98: 3‒22.
|
[29] |
Kaushik V, Nithish K B, Sakthi S, al et. Magnesium role in additive manufacturing of biomedical implants: Challenges and opportunities [J]. Additive Manufacturing, 2022, 55: 102802.
|
[30] |
Liu Y, Zheng Y F, Chen X H, al et. Fundamental theory of biodegradable metals-definition, criteria, and design [J]. Advanced Functional Materials, 2019, 29(18): 1805402.
|
[31] |
关绍康 , 朱世杰 , 王利国 , 等 . 科技成果: 镁锌基合金的降解调控机制及生物功能化 [R]. 郑州 : 郑州大学 , 2020 .
|
[32] |
关绍康 , 王俊 , 王利国 , 等 . 一种新型可生物降解血管支架用Mg-Zn-Y-Nd镁合金及其制备方法 : CN201110043303.8 [P]. 2011-10-15 .
|
[33] |
Zhang J, Li H Y, Wang W, al et. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study [J]. Acta Biomaterialia, 2018, 69: 372‒384.
|
[34] |
Li G N, Yang H T, Zheng Y F, al et. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility [J]. Acta Biomaterialia, 2019, 97: 23‒45.
|
[35] |
夏亚茹 , 何学斌 , 吕萍 , 等 . 生物可降解锌合金的最新研究进展 [J]. 中国铸造装备与技术 , 2022 , 57 3 : 5 ‒ 12 .
|
[36] |
Li H F, Shi Z Z, Wan L N. Opportunities and challenges of biodegradable Zn-based alloys [J]. Journal of Materials Science & Technology, 2020, 46: 136‒138.
|
[37] |
Yang H T, Jia B , Zhang Z C, al et. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nature Communications, 2020, 11: 401.
|
[38] |
Shi Z Z, Gao X X, Chen H T, al et. Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement [J]. Materials Science and Engineering: C, 2020, 116: 111197.
|
[39] |
Su Y C, Fu J Y, Lee W, al et. Improved mechanical, degradation and biological performances of Zn-Fe alloys as bioresorbable implants [J]. Bioactive Materials, 2022, 17: 334‒343.
|
[40] |
Sun J, Zhang X, Shi Z Z, al et. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation [J]. Acta Biomaterialia, 2021, 119: 485‒498.
|
[41] |
Zhou C, Feng X Y, Shi Z Z, al et. Research on elastic recoil and restoration of vessel pulsatility of Zn-Cu biodegradable coronary stents [J]. Biomedical Engineering-Biomedizinische Technik, 2020, 65: 219‒227.
|
[42] |
谢建新 , 宿彦京 , 薛德祯 , 等 . 机器学习在材料研发中的应用 [J]. 金属学报 , 2021 , 57 11 : 1343 ‒ 1361 .
|
[43] |
郑玉峰 , 夏丹丹 , 谌雨农 , 等 . 增材制造可降解金属医用植入物 [J]. 金属学报 , 2021 , 57 11 : 1499 ‒ 1520 .
|
[44] |
赵德伟 , 李军雷 . 多孔Ta的制备及其作为骨植入材料的应用进展 [J]. 金属学报 , 2017 , 53 10 : 1303 ‒ 1310 .
|
[45] |
Germaini M M, Belhabib S, Guessasma S, al et. Additive manufacturing of biomaterials for bone tissueengineering: A critical review of the state of the art andnew concepts [J]. Progress in Materials Science, 2022, 130: 100963.
|
[46] |
Davis R, Singh A, Jackson M J, al et. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing [J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 1473‒1530.
|
[47] |
Zhang D D, Peng F, Liu X Y. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating [J]. Journal of Alloys and Compounds, 2021, 853: 157010.
|
[48] |
Ma Y D, Yan J, Yan T T, al et. Biological properties of Cu-bearing and Ag-bearing titanium-based alloys and their surface modifications: A review of antibacterial aspect [J]. Frontiers in Materials, 2022, 9: 999794.
|
/
〈 |
|
〉 |