Technology and Equipment of Big Data on Crop Phenomics

Weiliang Wen, Xinyu Guo, Ying Zhang, Shenghao Gu, Chunjiang Zhao

Strategic Study of CAE ›› 2023, Vol. 25 ›› Issue (4) : 227-238.

PDF(1516 KB)
PDF(1516 KB)
Strategic Study of CAE ›› 2023, Vol. 25 ›› Issue (4) : 227-238. DOI: 10.15302/J-SSCAE-2023.04.015
Frontier of Engineering
Orginal Article

Technology and Equipment of Big Data on Crop Phenomics

Author information +
History +

Abstract

Automatic equipment and information technologies make it possible to acquire multi-scale and multi-source heterogeneous data of crops under different growth conditions, forming big data on crop phenomics. This will greatly promote the research progress of crop functional genomics, digital breeding, and smart cultivation. In this paper, the demand for and industrial development of technology and equipment of big data on crop phenomics are analyzed. Then, the current situation of research and development in this area is summarized from five aspects: data acquisition hardware, data transmission, data analysis, knowledge formation, and applications. The problems and developmental trends of relevant technologies, equipment, and industrial application in China are analyzed from the perspectives of high-throughput acquisition and intelligent analysis of big data on crop phenomics. At last, the following suggestions are proposed: achieving breakthroughs regarding key crop phenotyping sensor technologies from the underlying chip level, forming an autonomous phenotyping extraction technology system on the basis of controllable open source, strengthening the standards system construction for big data on crop phenomics, creating a new model of genotype‒phenotype‒environment big data-driven digital breeding and smart cultivation, and building a talent pool and collaborative network for crop phenomics.

Keywords

crop phenomics / phenotyping big data / technology and equipment for phenotyping / multi-omics

Cite this article

Download citation ▾
Weiliang Wen, Xinyu Guo, Ying Zhang, Shenghao Gu, Chunjiang Zhao. Technology and Equipment of Big Data on Crop Phenomics. Strategic Study of CAE, 2023, 25(4): 227‒238 https://doi.org/10.15302/J-SSCAE-2023.04.015

References

[1]
赵春江‍‍ . 植物表型组学大数据及其研究进展 [J]‍. 农业大数据学报 , 2019 , 1 2 : 5 ‒ 18 ‍.
[2]
Ninomiya S, Baret F, Cheng Z M‍. Plant phenomics: Emerging transdisciplinary science [J]‍. Plant Phenomics, 2019, 2019: 2765120‍.
[3]
Araus J L, E‍ Cairns J. Field high-throughput phenotyping: The new crop breeding frontier [J]‍. Trends in Plant Science, 2014, 19(1): 52‒61‍.
[4]
周济 , Tardieu F , Pridmore T , 等‍ . 植物表型组学: 发展、现状与挑战 [J]‍. 南京农业大学学报 , 2018 , 41 4 : 580 ‒ 588 ‍.
[5]
Zhao C, Zhang Y, Du J, al et‍. Crop phenomics: Current status and perspectives [J]‍. Frontiers in Plant Science, 2019, 10: 714‍.
[6]
Yang W N, Feng H, Zhang X H, al et‍. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives [J]‍. Molecular Plant, 2020, 13(2): 187‒214‍.
[7]
Jin X, Zarco-Tejada P, Schmidhalter U, al et‍. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms [J]‍. IEEE Geoscience and Remote Sensing Magazine, 2020, 9(1): 200‒231‍.
[8]
Pieruschka R, Schurr U‍. Plant phenotyping: Past, present, and future [J]‍. Plant Phenomics, 2019, 2019: 7507131‍.
[9]
胡伟娟 , 傅向东 , 陈凡 , 等‍ . 新一代植物表型组学的发展之路 [J]‍. 植物学报 , 2019 , 54 5 : 558 ‒ 568 ‍.
[10]
Tao H, Xu S, Tian Y, al et‍. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives [J]‍. Plant Communications, 2022, 3(6): 100344‍.
[11]
Watson A, Ghosh S, Williams M J, al et‍. Speed breeding is a powerful tool to accelerate crop research and breeding [J]‍. Nature Plants, 2018, 4(1): 23‒29‍.
[12]
Watt M, Fiorani F, Usadel B, al et‍. Phenotyping: New windows into the plant for breeders [J]‍. Annual Review of Plant Biology, 2020, 71: 689‒712‍.
[13]
王晓鸣 , 邱丽娟 , 景蕊莲 , 等‍ . 作物种质资源表型性状鉴定评价: 现状与趋势 [J]‍. 植物遗传资源学报 , 2022 , 23 1 : 12 ‒ 20 ‍.
[14]
全国人民代表大会常务委员会专题调研组‍ . 关于加强种质资源保护和育种创新情况的调研报告 [ROL]‍. 2021-10-21 ‍[ 2023-04-15 ]‍. http:www‍.npc‍.‍gov‍.‍cnnpcc30834202110b05ec4244ddb4fabb3eb560c5452258d‍.shtml‍ .
[15]
Song P, Wang J L, Guo X Y, al et‍. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding [J]‍. Crop Journal, 2021, 9(3): 633‒645‍.
[16]
万建民‍ . 作物分子设计育种 [J]‍. 作物学报 , 2006 3 : 455 ‒ 462 ‍.
[17]
朱艳 , 汤亮 , 刘蕾蕾 , 等‍ . 作物生长模型CropGrow研究进展 [J]‍. 中国农业科学 , 2020 , 53 16 : 3235 ‒ 3256 ‍.
[18]
曹卫星 , 朱艳 , 田永超 , 等‍ . 作物精确栽培技术的构建与实现 [J]‍. 中国农业科学 , 2011 , 44 19 : 3955 ‒ 3969 ‍.
[19]
Coherent Market Insights‍. Plant phenotyping market [EB/OL]‍. (2021-08-01)[2023-04-15]‍. https://www‍.‍coherentmarketinsights‍.‍com/market-insight/plant-phenotyping-market-4584‍.
[20]
Gojon A, Nussaume L, Luu D T, al et‍. Approaches and determinants to sustainably improve crop production [J]‍. Food and Energy Security, 2023, 12(1): e369‍.
[21]
Araus J L, Kefauver S C, Zaman-Allah M, al et‍. Translating high-throughput phenotyping into genetic gain [J]‍. Trends in Plant Science, 2018, 23(5): 451‒466‍.
[22]
Singh A, Ganapathysubramanian B, Singh A K, al et‍. Machine learning for high-throughput stress phenotyping in plants [J]‍. Trends in Plant Science, 2016, 21(2): 110‒124‍.
[23]
Fan J C, Li Y L, Yu S, al et‍. Application of Internet of Things to agriculture‒The LQ-FieldPheno platform: A high-throughput platform for obtaining crop phenotypes in field [J]‍. Research, 2023, 6(2): 0059‍.
[24]
郑庆华 , 刘欢 , 龚铁梁 , 等‍ . 大数据知识工程发展现状及展望 [J]‍. 中国工程科学 , 2023 , 25 2 : 208 ‒ 220 ‍.
[25]
Sun D, Robbins K, Morales N, al et‍. Advances in optical phenotyping of cereal crops [J]‍. Trends in Plant Science, 2021, 27(2): 191‒208‍.
[26]
Jin S C, Sun X L, Wu F F, al et‍. Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future prospects [J]‍. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 202‒223‍.
[27]
张慧春 , 李杨先 , 周宏平 , 等‍ . 植物表型平台与图像分析技术研究进展与展望 [J]‍. 农业机械学报 , 2019 , 51 3 : 1 ‒ 22 ‍.
[28]
Yang W N, Guo Z L, Huang C L, al et‍. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice [J]‍. Nature Communications, 2014, 5: 5087‍.
[29]
Du J J, Fan J C A, Wang C A Y, al et‍. Greenhouse-based vegetable high-throughput phenotyping platform and trait evaluation for large-scale lettuces [J]‍. Computers and Electronics in Agriculture, 2021, 186: 106193‍.
[30]
Wu S, Wen W, Wang Y, al et‍. MVS-Pheno: A portable and low-cost phenotyping platform for maize shoots using multiview stereo 3D reconstruction [J]‍. Plant Phenomics, 2020, 2020: 1848437‍.
[31]
杜建军 , 郭新宇 , 王传宇 , 等‍ . 基于全景图像的玉米果穗流水线考种方法及系统 [J]‍. 农业工程学报 , 2018 , 34 13 : 195 ‒ 202 ‍.
[32]
施巍松 , 孙辉 , 曹杰 , 等‍ . 边缘计算: 万物互联时代新型计算模型 [J]‍. 计算机研究与发展 , 2017 , 54 5 : 907 ‒ 924 ‍.
[33]
Wu S, Wen W L, Gou W B, al et‍. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction [J]‍. Frontiers in Plant Science, 2022, 13: 897746‍.
[34]
Ma Z, Du R, Xie J, al et‍. Phenotyping of silique morphology in oilseed rape using skeletonization with hierarchical segmentation [J]‍. Plant Phenomics, 2023, 5: 0027‍.
[35]
Li Y, Wen W, Miao T, al et‍. Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning [J]‍. Computers and Electronics in Agriculture, 2022, 193: 106702‍.
[36]
Du J J, Li B, Lu X J, al et‍. Quantitative phenotyping and evaluation for lettuce leaves of multiple semantic components [J]‍. Plant Methods, 2022, 18(1): 54‍.
[37]
Zavafer A, Bates H, Mancilla C, al et‍. Phenomics: Conceptualization and importance for plant physiology [J]‍. Trends in Plant Science, 2023: 2439‍.
[38]
Jin S, Su Y, Zhang Y, al et‍. Exploring seasonal and circadian Rhythms in structural traits of field maize from LiDAR time series [J]‍. Plant Phenomics, 2021, 2021: 9895241‍.
[39]
Jiang Y, Li C Y‍. Convolutional neural networks for image-based high-throughput plant phenotyping: A review [J]‍. Plant Phenomics, 2020, 2020: 4152816‍.
[40]
王璟璐 , 张颖 , 潘晓迪 , 等‍ . 作物表型组数据库研究进展及展望 [J]‍. 中国农业信息 , 2018 , 30 5 : 13 ‒ 23 ‍.
[41]
Neveu P, Tireau A, Hilgert N, al et‍. Dealing with multi-source and multi-scale information in plant phenomics: The ontology-driven Phenotyping Hybrid Information System [J]‍. New Phytologist, 2019, 221(1): 588‒601‍.
[42]
Zhang Y, Wang J, Du J, al et‍. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis [J]‍. Plant Biotechnology Journal, 2020, 19(1): 35‒50‍.
[43]
Reynolds D, Ball J, Bauer A, al et‍. CropSight: A scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management [J]‍. GigaScience, 2019, 8(3): 11‍.
[44]
Gui S T, Yang L F, Li J B, al et‍. ZEAMAP, a comprehensive database adapted to the maize multi-omics era [J]‍. Iscience, 2020, 23(6): 31‍.
[45]
Mcguire A L, Gabriel S, Tishkoff S A, al et‍. The road ahead in genetics and genomics [J]‍. Nature Reviews Genetics, 2020, 21(10): 581‒596‍.
[46]
Guo Z L, Li B, Du J J, al et‍. LettuceGDB: The community database for lettuce genetics and omics [J]‍. Plant Communications, 2023, 4(1): 100425‍.
[47]
Cabrera-Bosquet L, Fournier C, Brichet N, al et‍. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform [J]‍. New Phytologist, 2016, 212(1): 269‒281‍.
[48]
Wen W, Gu S, Xiao B, al et‍. In situ evaluation of stalk lodging resistance for different maize (Zea mays L‍.) cultivars using a mobile wind machine [J]‍. Plant Methods, 2019, 15(1): 96‍.
[49]
Ferguson J N, Fernandes S B, Monier B, al et‍. Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions [J]‍. Plant Physiology, 2021, 187(3): 1481‒1500‍.
[50]
Wu X, Feng H, Wu D, al et‍. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance [J]‍. Genome Biology, 2021, 22(1): 185‍.
[51]
Wang W, Guo W, Le L, al et‍. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize [J]‍. Molecular Plant, 2023, 16: 1‒20‍.
[52]
Le L, Guo W J, Du D Y, al et‍. A spatiotemporal transcriptomic network dynamically modulates stalk development in maize [J]‍. Plant Biotechnology Journal, 2022, 20(12): 2313‒2331‍.
[53]
Ren W, Zhao L F, Liang J X, al et‍. Genome-wide dissection of changes in maize root system architecture during modern breeding [J]‍. Nature Plants, 2022, 8(12): 1408‍.
[54]
张颖 , 廖生进 , 王璟璐 , 等‍ . 信息技术与智能装备助力智能设计育种 [J]‍. 吉林农业大学学报 , 2021 , 43 2 : 119 ‒ 129 ‍.
[55]
Xu Y, Zhang X, Li H, al et‍. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction [J]‍. Molecular Plant, 2022, 15(11): 1664‒1695‍.
[56]
Ninomiya S‍. High-throughput field crop phenotyping: Current status and challenges [J]‍. Breeding Science, 2022, 72(1): 3‒18‍.
[57]
顾生浩 , 温维亮 , 卢宪菊 , 等‍ . 作物智慧栽培学——信息 ‒ 农艺 ‒ 农机深度融合的新农科 [J]‍. 农学学报 , 2023 , 13 2 : 67 ‒ 76 ‍.
[58]
Li Y, Wen W, Fan J, al et‍. Multi-source data fusion improves time-series phenotype accuracy in maize under a field high-throughput phenotyping platform [J]‍. Plant Phenomics, 2023, 5: 0043‍.
Funding
National Key R&D Program of China (2022YFD2002300); Chinese Academy of Engineering projects “Strategic Research on the Digital Development of Biological Breeding” (2021-JJZD-04), “Strategic Research on Smart Agriculture Development in Anhui Province” (2021-DFZ-17)
AI Summary AI Mindmap
PDF(1516 KB)

Accesses

Citations

Detail

Sections
Recommended

/