Dynamic Carbon Neutrality Mode for Coal-Based Energy Systems and Effectiveness Assessment Thereof

Shirong Ge, Bing Wang, Haohao Feng, Xinru Jiang, Xue Li

Strategic Study of CAE ›› 2023, Vol. 25 ›› Issue (5) : 122-135.

PDF(1885 KB)
PDF(1885 KB)
Strategic Study of CAE ›› 2023, Vol. 25 ›› Issue (5) : 122-135. DOI: 10.15302/J-SSCAE-2023.05.011
Research on the scientific system and strategic path of carbon neutral development in China's coal industry
Orginal Article

Dynamic Carbon Neutrality Mode for Coal-Based Energy Systems and Effectiveness Assessment Thereof

Author information +
History +

Abstract

The conventional energy-transition pathway, that is, reducing coal, increasing gas, and developing renewable energies, cannot fully satisfy the requirement of China for energy security under the new situation. Creating a novel dynamic carbon neutrality mode for coal-based energy systems is a forward-looking development approach to solving the problem of high carbon emissions and ensuring national energy security. This study summarizes the international energy transition modes and analyzes the urgency and importance of developing a low-carbon coal-based energy system in response to the challenges of energy security and emissions reduction. Moreover, it clarifies the scientific intension, establishes a system framework, and discloses the security guarantee and emissions reduction mechanisms of the dynamic carbon neutrality mode for coal-based energy systems. An effectiveness assessment model based on system dynamics is established to assess the effectiveness of the mode in terms of energy security, emission reduction,and social development. The results indicate that compared to the conventional coal-fueled systems, the coal-based energy system can potentially reduce carbon emissions by 46% to 55% and external dependence on oil and gas to be below 20% in 2060 under different scenarios; the carbon emissions can be reduced by 84% using the dynamic carbon neutrality mode and the carbon capture and storage technology, and is expected to be further lowered owing to the carbon capture, utilization, and storage technology and carbon sinks in mining areas. Coal-based energy development and application can serve as a strategic technology for oil and gas reserves, thereby ensuring energy security. However, China still faces a significant oil and gas gap before 2030, and thus the development of the coalbased energy is urgent. Furthermore, we propose that a novel coal-based energy system supported by dynamic carbon neutrality technologies should be built to achieve energy independence and security as well as achieve the carbon peaking and carbon neutrality goals. Coal underground gasification, tar-rich coal utilization, and coalbed gas development technologies should be regarded as a potential technology portfolio in the short and medium term and the coal in-situ fluidization mining technology could be a long-term choice.

Keywords

coal-fueled energy / coal-based energy / dynamic carbon neutrality / energy security / carbon emission reduction

Cite this article

Download citation ▾
Shirong Ge, Bing Wang, Haohao Feng, Xinru Jiang, Xue Li. Dynamic Carbon Neutrality Mode for Coal-Based Energy Systems and Effectiveness Assessment Thereof. Strategic Study of CAE, 2023, 25(5): 122‒135 https://doi.org/10.15302/J-SSCAE-2023.05.011

References

[1]
杨宇 , 夏四友 , 钱肖颖‍ . 能源转型的地缘政治研究 [J]‍. 地理学报 , 2022 , 77 8 : 2050 ‒ 2066 ‍.
[2]
Iakubovskii D, Krupenev D, Komendantova N, al et‍. A model for power shortage minimization in electric power systems given constraints on controlled sections [J]. Energy Reports, 2021, 7: 4577‒4586.
[3]
王江 , 张翔‍ . 可持续能源转型: 模型构建与分析 [J]‍. 中国人口·资源与环境 , 2020 , 30 3 : 74 ‒ 82 ‍.
[4]
顾永正‍ . 煤基能源碳捕集利用与封存技术研究进展 [J]‍. 现代化工 , 2023 , 43 9 : 38 ‒ 41, 46 ‍.
[5]
张宁 , 薛美美 , 吴潇雨 , 等‍ . 国内外能源转型比较与启示 [J]‍. 中国电力 , 2021 , 54 2 : 113 ‒ 119, 155 ‍.
[6]
张涛 , 姜大霖‍ . 碳达峰碳中和目标下煤基能源产业转型发展 [J]‍. 煤炭经济研究 , 2021 , 41 10 : 44 ‒ 49 ‍.
[7]
张磊 , 张俊杰 , 王顺森 , 等‍ . 煤基分布式能源技术研究与经济性分析 [J]‍. 节能技术 , 2021 , 39 5 : 403 ‒ 406, 412 ‍.
[8]
Wang C, He B, Yan L, al et‍. Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant [J]‍. Energy, 2014, 65: 80‒90‍.
[9]
张宏‍ . 推动"双碳"战略实施构建煤炭产业发展新格局 [J]‍. 中国煤炭 , 2022 , 48 2 : 1 ‒ 4 ‍.
[10]
谭杰‍ . 煤炭矿区生态修复发展现状及问题探讨 [J]‍. 能源环境保护 , 2018 , 32 5 : 45 ‒ 47 ‍.
[11]
王其藩‍ . 系统动力学 [M]‍. 上海 : 上海财经大学出版社 , 2009 ‍.
[12]
彭生江 , 杨淑霞 , 袁铁江‍ . 面向风煤富集区域的风 ‒ 氢 ‒ 煤耦合系统演化发展系统动力学 [J]‍. 高电压技术 , 2023 , 49 8 : 3478 ‒ 3489 ‍.
[13]
杜振东 , 徐尔丰 , 张笑弟 , 等‍ . 绿色电力证书市场下中国各类电源规模及发电成本演化发展 [J]‍. 中国电力 , 2019 , 52 7 : 168 ‒ 176 ‍.
[14]
Yang Q, Zhang L, Zhang J, al et‍. System simulation and policy optimization of China´s coal production capacity deviation in terms of the economy, environment, and energy security [J]‍. Resources Policy, 2021, 74: 102314‍.
[15]
武强 , 涂坤 , 曾一凡 , 等‍ . 打造我国主体能源煤炭升级版面临的主要问题与对策探讨 [J]‍. 煤炭学报 , 2019 , 44 6 : 1625 ‒ 1636 ‍.
[16]
Liu H, Liu S‍. Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification [J]‍. International Journal of Hydrogen Energy, 2021, 46(14): 9630‒9643‍.
[17]
Li J, Cheng W‍. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification [J]‍. International Journal of Hydrogen Energy, 2020, 45(51): 27979‒27993‍.
[18]
陈馨‍ . 典型制氢工艺生命周期碳排放对比研究 [J]‍. 当代石油石化 , 2023 , 31 1 : 19 ‒ 25 ‍.
[19]
张源 , 顾斌 , 周长冰 , 等‍ . 煤炭地下气化过程产气特征数值模拟研究 [J]‍. 采矿与安全工程学报 , 2022 , 39 6 : 1169 ‒ 1176 ‍.
[20]
金玲 , 郝成亮 , 吴立新 , 等‍ . 中国煤化工行业二氧化碳排放达峰路径研究 [J]‍. 环境科学研究 , 2022 , 35 2 : 368 ‒ 376 ‍.
[21]
严晓辉 , 杨芊 , 高丹 , 等‍ . 我国煤炭清洁高效转化发展研究 [J]‍. 中国工程科学 , 2022 , 24 6 : 19 ‒ 25 ‍.
[22]
黄震 , 谢晓敏 , 张庭婷‍ . " 双碳"背景下我国中长期能源需求预测与转型路径研究 [J]‍. 中国工程科学 , 2022 , 24 6 : 8 ‒ 18 ‍.
[23]
刘淑琴 , 刘欢 , 纪雨彤 , 等‍ . 深部煤炭地下气化制氢碳排放核算及碳减排潜力分析 [J]‍. 煤炭科学技术 , 2023 , 51 1 : 531 ‒ 541 ‍.
Funding
Chinese Academy of Engineering project “Research on the Scientific System and Strategic Path of Carbon Neutral Development in China’s Coal Industry” (2022-XBZD-09), “Research on China’s Energy Security Strategy” (2022-JB-05), “Strategic Research on Promoting the Construction of Energy Power” (2022-XBZD-10)
AI Summary AI Mindmap
PDF(1885 KB)

Accesses

Citations

Detail

Sections
Recommended

/