
Metal Corrosion in Carbon Capture, Utilization, and Storage: Progress and Challenges
Yong Xiang, Yu Yuan, Pei Zhou, Guangsheng Liu, Wei Lyu, Mingxing Li, Chunxia Zhang, Qingjun Zhou, Xuehui Zhao, Wei Yan
Strategic Study of CAE ›› 2023, Vol. 25 ›› Issue (3) : 197-208.
Metal Corrosion in Carbon Capture, Utilization, and Storage: Progress and Challenges
This study reviews the metal corrosion problem regarding the carbon capture, utilization, and storage (CCUS) technology and aims to deepen the understanding and research on this problem and thus deal with the severe material corrosion failures in the capture, transportation, utilization, and storage systems. Based on the novel corrosion environments, the uniqueness of corrosion behaviors, limited cognition, and relative lack of protective measures in CCUS technology systems, this study analyzes the possible types of metal corrosion and its major influencing factors, explores the challenges it brings, and draws the following conclusions. For the CO2 organic amine capture system, the degradation mechanism of absorbents and the impact of degradation products on the corrosion process are complex, and some degradation products have a inhibitory effect on metal corrosion. The internal corrosion issue of dense-phase CO2 transmission pipelines cannot be ignored, and controlling the moisture content is the key to controlling this corrosion problem. The risk of corrosion failures leading to CO2 leakage is high in the wellbore tubing of CO2 enhanced oil recovery utilization and storage systems under the long-term coupled effects of ultra-high CO2 partial pressure, carbon source impurities, high mineralized formation water, microorganisms, and stress. Finally, the research that needs to be conducted urgently in the future is prospected, including the corrosion impact of different carbon source impurities on each subsystem, the material degradation law in the wellbore area under long-term storage conditions, and corrosion protection technologies of CCUS systems.
carbon capture, utilization, and storage / carbon source impurities / corrosion environment characteristics / influencing factors of corrosion / supercritical CO2
[1] |
袁士义, 马德胜, 李军诗, 等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望 [J]. 石油勘探与开发, 2022, 49(4): 828–834.
|
[2] |
蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集与利用封存(CCUS)年度报告(2021)——中国CCUS路径研究 [R]. 北京/武汉: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
向勇, 侯力, 杜猛, 等. 中国CCUS-EOR技术研究进展及发展前景 [J]. 油气地质与采收率, 2022, 30(2): 1–17.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
赵雪会, 何治武, 刘进文, 等. CCUS腐蚀控制技术研究现状 [J]. 石油管材与仪器, 2017, 3(3): 1–6.
|
[16] |
李彦鹏, 朱世东, 李金灵, 等. 油气管道H2S/CO2腐蚀与防护技术研究进展 [J]. 腐蚀与防护, 2022, 43(6): 1–6, 12.
|
[17] |
李玉星, 刘兴豪, 王财林, 等. 含杂质气态CO2输送管道腐蚀研究进展 [J]. 金属学报, 2021, 57(3): 283–294.
|
[18] |
|
[19] |
商永滨, 林罡, 赵大庆, 等. 20#无缝钢管在液态CO2中的腐蚀规律研究 [J]. 内蒙古石油化工, 2018, 5: 15–19.
|
[20] |
商永滨, 林罡, 赵大庆, 等. 16Mn钢在液态CO2中的腐蚀规律研究 [J]. 全面腐蚀控制, 2019, 33(2): 83–88.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
樊海燕, 姜志强, 安雪微, 等. 油田管道应力腐蚀断裂成因分析 [J]. 油气田地面工程, 2022, 41(1): 71–74, 79.
|
[37] |
胡芳婷, 赵密锋, 邢星, 等. 某油田3Cr P110修复油管断裂原因分析 [J]. 材料保护, 2020, 53(10): 115–119, 148.
|
[38] |
谭才渊, 殷启帅, 杨进, 等. 渤海某油田L80油管腐蚀机理研究 [J]. 表面技术, 2017, 46(3): 236–245.
|
[39] |
王俊良, 臧晗宇, 张亚明, 等. 油管及油管接箍腐蚀失效分析 [J]. 腐蚀与防护, 2010, 31(8): 662–664.
|
[40] |
赵存耀, 齐亚猛. 某油田注水井P110钢级油管接箍开裂失效分析 [J]. 石油管材与仪器, 2022, 8(3): 46–50.
|
[41] |
|
[42] |
|
[43] |
王峰, 韦春艳, 黄天杰, 等. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34(1): 46–52.
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
褚武扬, 乔利杰, 高克玮. 阳极溶解型应力腐蚀 [J]. 科学通报, 2000, 45(24): 2581–2588.
|
[49] |
刘传森, 李壮壮, 陈长风. 不锈钢应力腐蚀开裂综述 [J]. 表面技术, 2020, 49(3): 1–13.
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
杨晓龙, 田永强, 王旭, 等. 某N80油管接箍腐蚀断裂失效分析 [J]. 焊管, 2022, 45(1): 42–48.
|
[55] |
张亚明, 臧晗宇, 董爱华, 等. 13Cr钢油管腐蚀原因分析 [J]. 腐蚀科学与防护技术, 2009, 21(5): 499–501.
|
[56] |
张颖, 杨坤, 余柳丝, 等. 油井管接头螺纹腐蚀与防护研究进展 [J]. 科学技术与工程, 2022, 22(7): 2563–2572.
|
[57] |
蔡锐, 赵金龙, 吴鹏, 等. L80油管螺纹接头腐蚀原因分析 [J]. 理化检验(物理分册), 2019, 55(4): 278–281, 288.
|
[58] |
|
[59] |
|
[60] |
|
[61] |
胡骞. 缝隙腐蚀的电化学噪声特征及机理研究 [D]. 武汉: 华中科技大学(博士学位论文), 2011.
|
[62] |
宋义全, 杜翠薇, 张新, 等. Cl-浓度对X70管线钢缝隙腐蚀的影响 [J]. 金属学报, 2009, 45(9): 1130–1134.
|
[63] |
钟显康, 郑子奇, 莫林, 等. 螺纹接头处拉应力作用下的缝隙腐蚀行为 [J]. 装备环境工程, 2020, 17(11): 52–59.
|
[64] |
|
[65] |
|
[66] |
姚鹏程, 谢俊峰, 杨春玉, 等. 高温高压环境Cl-浓度和CO2分压对不锈钢油管的影响 [J]. 全面腐蚀控制, 2017, 31(10): 67–70.
|
[67] |
王艳飞. L360钢在H2S–CO2–Cl-体系中元素硫沉积下的点蚀机理 [D]. 西安: 西安石油大学(硕士学位论文), 2021.
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
张昆, 孙悦, 王池嘉, 等. 碳捕集、利用与封存中CO2腐蚀与防护研究 [J]. 表面技术, 2022, 51(9): 43–52.
|
/
〈 |
|
〉 |