Development Strategy of Space Robots for Autonomous Repair and Maintenance of Spacecraft

Liangliang Zhao, Xueai Li, Jingdong Zhao, Hong Liu

Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (1) : 149-159.

PDF(5192 KB)
PDF(5192 KB)
Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (1) : 149-159. DOI: 10.15302/J-SSCAE-2024.01.014
Strategic Research on New Generation of Artificial Intelligence and Industrial Cluster

Development Strategy of Space Robots for Autonomous Repair and Maintenance of Spacecraft

Author information +
History +

Abstract

Space robots can adapt to the extreme environment of space, break through the limits of human space exploration, and greatly improve the safety and economy of space operation and control. Moreover, space robots are the core equipment to improve the level of space science and technology, providing important support and a strong guarantee for promoting space industry development. This study elaborates on the great values of developing space robot technology for the autonomous repair and maintenance of spacecraft, which include promoting the construction of strengthening China’s space powerindustry, promoting the development of national defense science and technology, and leading transformative scientific and technological innovation. The progress and development trends of domestic and foreign space robotics technologies in China and abroad are analyzed from the policy, technology, and market perspectives. In addition, technical challenges and problems faced by China are dissected toward the autonomous repair and maintenance of spacecraft. The development system and breakthrough path of China’s space robot technologies for autonomous repair and maintenance of spacecraft are demonstrated based on major national strategic needs, research foundation, and development directions. Furthermore, the following suggestions are proposed: (1) accelerating the implementation of major special projects for on-orbit services (Scientific and Technological Innovation 2030), (2) increasing support for basic research on intelligent operation and control of space robots, (3) accelerating the construction of a government-enterprise-university collaborative innovation mechanism, and (4) strengthening international cooperation to attract foreign science and technology talents to China.

Keywords

space robots / autonomous repair and maintenance of spacecraft / intelligent operation and control / space operations / space economy

Cite this article

Download citation ▾
Liangliang Zhao, Xueai Li, Jingdong Zhao, Hong Liu. Development Strategy of Space Robots for Autonomous Repair and Maintenance of Spacecraft. Strategic Study of CAE, 2024, 26(1): 149‒159 https://doi.org/10.15302/J-SSCAE-2024.01.014

References

[1]
孟光, 韩亮亮, 张崇峰‍‍. 空间机器人研究进展及技术挑战 [J]‍. 航空学报, 2021, 42(1): 523963‍.
[2]
Gao Y, Chien S‍. Review on space robotics: Toward top-level science through space exploration [J]‍. Science Robotics, 2017, 2(7): eaan5074‍.
[3]
李元龙, 李志强‍. "星链计划"及其军事应用潜力研究 [C]‍. 中国指挥与控制学会‍. 第十届中国指挥控制大会论文集(上册)‍. 北京: 兵器工业出版社, 2022: 86‒92‍.
[4]
丁希仑, 高海波, 黄攀峰, 等‍. 蓬勃发展的空间机器人技术与应用 [J]‍. 机器人, 2022, 44(1): 1‍.
[5]
U‍.S‍. Department of State‍. National space policy of the United States of America [EB/OL]‍. (2010-06-28)[2023-03-20]‍. https://www‍.nasa‍.gov/sites/default/files/national_space_policy_6-28-10‍.pdf‍.
[6]
The Computing Community Consortium‍. A Roadmap for US robotics from Internet to robotics [EB/OL]‍. (2016-11-01)‍[2023-03-20]‍. https://cra‍.org/ccc/wp-content/upload s/sites/2/2016/11/roadmap3-final-rs-1‍.pdf‍.
[7]
Christensen H, Amato N, Yanco H, et al‍. A roadmap for US robotics—From Internet to robotics 2020 edition [J]‍. Foundations and Trends in Robotics, 2021, 8(4): 307‒424‍.
[8]
U‍.S‍. Department of State‍. The national space policy [EB/OL]‍. (2020-12-09)[2023-03-20]‍. https://www‍. federalregister‍.gov/documents/2020/12/16/2020-27892/the-national-space-policy‍.
[9]
The Partnership for Robotics in Europe‍. Multi-annual roadmap for robotics in Europe [EB/OL]‍. (2016-12-02)[2023-03-20]‍. https://vdocuments‍.net/robotics-2020-multi-annual-roadmap‍.html?page=1‍.
[10]
Department for Business, Energy & Industrial Strategy, Ministry of Defence, and UK Space Agency‍. GOV‍.UK‍. National space strategy [EB/OL]‍. (2021-09-27)[2023-03-20]‍. https://www‍.gov‍.uk/government/publications/national-space-strategy/national-space-strategy‍.
[11]
Ogilvie A, Allport J, Hannah M, et al‍. Autonomous satellite servicing using the orbital express demonstration manipulator system [C]‍. Hollywood: The 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008‍.
[12]
Barnhart D, Sullivan B, Hunter R, et al‍. Phoenix program status-2013 [C]‍. San Diego: AIAA SPACE 2013 Conference and Exposition‍, 2013‍.
[13]
Gregory T, Newman M‍. Thermal design considerations of the robotic refueling mission (RRM) [C]‍. Oregon: 41st International Conference on Environmental Systems, 2011‍.
[14]
Brannan J C, Carignan C R, Roberts B J‍. Hybrid strategy for evaluating on-orbit servicing, assembly, and manufacturing technologies [C]‍. Virtual Event: AIAA, ASCEND 2020‍, 2020‍.
[15]
Diftler M A, Mehling J S, Abdallah M E, et al‍. Robonaut 2—The first humanoid robot in space [C]‍. Shanghai: 2011 IEEE International Conference on Robotics and Automation‍, 2011‍.
[16]
Sullivan B R, Parrish J, Roesler G‍. Upgrading In-service spacecraft with on-orbit attachable capabilities [C]‍. Orlando, FL: AIAA, 2018 AIAA SPACE and Astronautics Forum and Expositio‍, 2018‍.
[17]
Pyrak M, Anderson J‍. Performance of Northrop grumman´s mission extension vehicle (MEV) RPO imagers at GEO [C]‍. Florida: Air, Sea and Space Vehicles and Infrastructure 2022, 2022‍.
[18]
Hiltz M, Rice C, Boyle K, et al‍. CANADARM: 20 years of mission success through adaptation [C]‍. Montreal: International Symposium on Artificial Intelligence, Robotics and Automation, 2001‍.
[19]
Hirzinger G, Brunner B, Dietrich J, et al‍. Sensor-based space robotics-ROTEX and its telerobotic features [J]‍. IEEE Transactions on Robotics and Automation, 1993, 9(5): 649‒663‍.
[20]
Hirzinger G, Landzettel K, Reintsema D, et al‍. ROKVISS-robotics component verification on ISS [C]‍. Orlando: IEEE International Conference on Robotics and Automation, 2006.
[21]
Oda M‍. Space robot experiments on NASDA´s ETS-VII satellite-an overview of the project and experiment results [J]‍. The Journal of Space Technology and Science, 1998, 14: 3‒8‍.
[22]
Kimura S, Mineno H, Yamamoto H, et al‍. Preliminary experiments on technologies for satellite orbital maintenance using Micro-LabSat 1 [J]‍. Advanced Robotics, 2004, 18(2): 117‒138‍.
[23]
Nishida S I, Kawamoto S, Okawa Y, et al‍. Space debris removal system using a small satellite [J]‍. Acta Astronautica, 2009, 65(1‒2): 95‒102‍.
[24]
中华人民共和国国务院‍. 国家中长期科学和技术发展规划纲要(2006—2020年) [J]‍. 国务院公报, 2006 (9): 7‒37‍.
[25]
中华人民共和国中央人民政府‍. 中华人民共和国国民经济和社会发展第十三个五年规划纲要 [EB/OL]‍. (2016-03-17)[2023-03-20]‍. http://www‍.gov‍.cn/xinwen/ 2016-03/17/content_5054992‍.htm‍.
[26]
工信部装备工业司‍. 《中国制造2025》推动机器人发展 [J]‍. 机器人技术与应用, 2015 (3): 31‒33‍.
[27]
中华人民共和国中央人民政府‍. 十五部门关于印发《“十四五"机器人产业发展规划》的通知 [EB/OL]‍. (2021-12-21)[2023-03-20]‍. http://www‍.gov‍.cn/zhengce/zhengceku/2021-12/28/content_5664988‍.htm‍.
[28]
Gao X H, Jin M H, Xie Z W, et al‍. Development of the Chinese intelligent space robotic system [C]‍. Beijing: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006‍.
[29]
刘宏, 李志奇, 刘伊威, 等‍. 天宫二号机械手关键技术及在轨试验 [J]‍. 中国科学: 技术科学, 2018, 48(12): 1313‒1320‍.
[30]
王友渔, 胡成威, 唐自新, 等‍. 我国空间站机械臂系统关键技术发展 [J]‍. 航天器工程, 2022, 31(6): 147‒155‍.
[31]
胡成威, 高升, 熊明华, 等‍. 空间站核心舱机械臂关键技术 [J]‍. 中国科学: 技术科学, 2022, 52(9): 1299‒1331‍.
AI Summary AI Mindmap
PDF(5192 KB)

Accesses

Citations

Detail

Sections
Recommended

/