
Key Manufacturing Technologies of Microbial Protein and Its Application in Food Industry
Chao Wang, Lu Xia, Zhaofeng Li, Jian Chen
Key Manufacturing Technologies of Microbial Protein and Its Application in Food Industry
Food protein is one of the most important nutrients for human beings. The existing ways of obtaining protein are difficult to satisfy the huge demand for protein supply owing to the continuous growth of population and the continuous improvement in living standards. Microbial protein manufacturing is the efficient production of protein raw materials by using cheap biomass raw materials in the way of workshop production, which is expected to become one of the most effective and feasible alternative protein sources in the future. This research introduces industrial application status of several microprotein such as yeast protein, microalgae protein, and filamentous fungi protein, and functional proteins such as lactoprotein, ovalbumin, and hemoglobin. The research also sorts out key manufacturing technical systems involved in substrate selection and utilization, strain breeding, fermentation process control, and protein extraction. It is concluded that in the context that microbial protein has multiple production advantages and few application cases in the food industry, to promote food application and industrialization of microbial protein, it is urgent to solve two problems: food processing as well as evaluation of nutrition and safety. The research can provide a basic reference for national alternative protein strategies and the development layout of the microprotein industry.
alternative protein / microbial protein / technology system / food industrial application / an all-encompassing approach to food
[1] |
韩永霞. 食物蛋白质与人体免疫力 [J]. 食品安全导刊, 2020 (36): 45‒47.
Han Y X. Food protein and human immunity [J]. China Food Safety Magazine, 2020 (36): 45‒47.
|
[2] |
汪超, 刘元法, 周景文. 细胞培养肉的生物伦理学思考 [J]. 生物工程学报, 2021, 37(2): 378‒383.
Wang C, Liu Y F, Zhou J W. Bioethical considerations of cell-cultured meat [J]. Chinese Journal of Biotechnology, 2021, 37(2): 378‒383.
|
[3] |
徐海泉, 郭红宇, 刘瀛弢, 等. 食物自给率研究现状与思考 [J]. 中国食物与营养, 2022, 28(12): 44‒47.
Xu H Q, Guo H Y, Liu Y T, et al. Current status and reflections on food self-sufficiency research [J]. Food and Nutrition in China, 2022, 28(12): 44‒47.
|
[4] |
李兆丰, 孔昊存, 刘延峰, 等. 未来食品: 机遇与挑战 [J]. 中国食品学报, 2022, 22(4): 1‒13.
Li Z F, Kong H C, Liu Y F, et al. Future foods: Opportunity and challenge [J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(4): 1‒13.
|
[5] |
陈坚. 未来食品: 任务与挑战 [J]. 中国食物与营养, 2022, 28(7): 5‒6.
Chen J. Future foods: Tasks and challenges [J]. Food and Nutrition in China, 2022, 28(7): 5‒6.
|
[6] |
汪超, 夏路, 陈坚, 等. 基于"健康中国"战略的未来食品科研平台构建 [J]. 中国食品学报, 2023, 23(12): 433‒437.
Wang C, Xia L, Chen J, et al. Construction of future food research platform based on healthy China strategy [J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(12): 433‒437.
|
[7] |
Pancrazio G, Cunha S C, de Pinho P G, et al. Spent brewer's yeast extract as an ingredient in cooked hams [J]. Meat Science, 2016, 121: 382‒389.
|
[8] |
唐晓荞, 武宇, 樊军, 等. 酵母蛋白的营养质量评价 [J]. 公共卫生与预防医学, 2020, 31(6): 100‒104.
Tang X Q, Wu Y, Fan J, et al. Nutritional evaluation of yeast protein [J]. Journal of Public Health and Preventive Medicine, 2020, 31(6): 100‒104.
|
[9] |
尤孝鹏, 陈智先. 运动营养食品的营养素、功能及酵母蛋白在其中的应用前景 [J]. 食品工业科技, 2023, 1(3): 1‒13.
You X P, Chen Z X. Nutrient, function and application prospect of yeast protein in sports nutrition food [J]. Food Industry Science and Technology, 2023, 1(3): 1‒13.
|
[10] |
聂海军. 酵母蛋白营养成分分析及其在蛋白棒中的应用研究 [J]. 农产品加工, 2022 (18): 10‒12.
Nie H J. Analysis of nutritional components of yeast protein and its application in protein bar [J]. Farm Products Processing, 2022 (18): 10‒12.
|
[11] |
Jach M E, Serefko A, Ziaja M, et al. Yeast protein as an easily accessible food source [J]. Metabolites, 2022, 12(1): 63.
|
[12] |
Ma J R, Sun Y F, Meng D M, et al. Yeast proteins: The novel and sustainable alternative protein in food applications [J]. Trends in Food Science & Technology, 2023, 135: 190‒201.
|
[13] |
关于巴拉圭冬青叶(马黛茶叶)等9种"三新食品"的公告 [J]. 饮料工业, 2023, 26(6): 1‒2.
Announcement on 9 kinds of "three new foods" such as Paraguayan hollyleaf (yerba mate leaf) [J]. Beverage Industry, 2023, 26(6): 1‒2.
|
[14] |
高风正, 葛保胜, 向文洲, 等. 生物技术研究引领中国微藻产业发展的六十年: 回顾与展望 [J]. 中国科学: 生命科学, 2021, 51(1): 26‒39.
Gao F Z, Ge B S, Xiang W Z, et al. Development of microalgal industries in the past 60 years due to biotechnological research in China: A review [J]. SCIENTIA SINCIA Vitae, 2021, 51(1): 26‒39.
|
[15] |
Koyande A K, Chew K W, Rambabu K, et al. Microalgae: A potential alternative to health supplementation for humans [J]. Food Science and Human Wellness, 2019, 8(1): 16‒24.
|
[16] |
Lum K K, Kim J, Lei X G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed [J]. Journal of Animal Science and Biotechnology, 2013, 4(1): 53.
|
[17] |
陈峰, 杨帅伶, 刘宾. 微藻蛋白质及其在食品中的应用研究进展 [J]. 中国食品学报, 2022, 22(6): 21‒32.
Chen F, Yang S L, Liu B. Microalgal protein and research progress on application in foods [J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 21‒32.
|
[18] |
Ursu A V, Marcati A, Sayd T, et al. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris [J]. Bioresource Technology, 2014, 157: 134‒139.
|
[19] |
周正富, 庞雨, 张维, 等. 乳蛋白重组表达与人造奶生物合成: 全球专利分析与技术发展趋势 [J]. 合成生物学, 2021, 2(5): 764‒777.
Zhou Z F, Pang Y, Zhang W, et al. Recombinant expression of milk proteins and biosynthesis of animal-free milk: Analysis on related patents and trend for technology development [J]. Synthetic Biology Journal, 2021, 2(5): 764‒777.
|
[20] |
张齐, 崔金明, 蒙海林, 等. 7种牛奶蛋白基因在大肠杆菌中的异源表达 [J]. 集成技术, 2016, 5(6): 79‒84.
Zhang Q, Cui J M, Meng H L, et al. Synthesis of seven milk proteins in escherichia coli [J]. Journal of Integration Technology, 2016, 5(6): 79‒84.
|
[21] |
Séverin S, Xia W S. Milk biologically active components as nutraceuticals: Review [J]. Critical Reviews in Food Science and Nutrition, 2005, 45(7/8): 645‒656.
|
[22] |
Jin L, Li L H, Zhou L X, et al. Improving expression of bovine lactoferrin N-lobe by promoter optimization and codon engineering in Bacillus subtilis and its antibacterial activity [J]. Journal of Agricultural and Food Chemistry, 2019, 67(35): 9749‒9756.
|
[23] |
Cui S X, Lv X Q, Sun G Y, et al. Recent advances and prospects in purification and heterologous expression of lactoferrin [J]. Food Bioengineering, 2022, 1(1): 58‒67.
|
[24] |
Takahashi N, Orita T, Hirose M. Production of chicken ovalbumin in Escherichia coli [J]. Gene, 1995, 161(2): 211‒216.
|
[25] |
Järviö N, Parviainen T, Maljanen N L, et al. Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin [J]. Nature Food, 2021, 2(12): 1005‒1013.
|
[26] |
Zhao X R, Zhou J W, Du G C, et al. Recent advances in the microbial synthesis of hemoglobin [J]. Trends in Biotechnology, 2021, 39(3): 286‒297.
|
[27] |
Xue J, Zhou J, Li J, et al. Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins [J]. Bioresour Technol, 2023, 370: 128556.
|
[28] |
王国坤, 蔺玉萍, 王钦宏, 等. 微生物蛋白制造的发展趋势与挑战 [J]. 科学通报, 2023, 68(21): 2779‒2789.
Wang G K, Lin Y P, Wang Q H, et al. Microbial protein manufacturing: The developing trend and challenge [J]. Chinese Science Bulletin, 2023, 68(21): 2779‒2789.
|
[29] |
杨瑞, 罗刚, 张士成, 等. 餐厨垃圾制备单细胞蛋白研究进展 [J]. 复旦学报(自然科学版), 2022, 61(2): 229‒237.
Yang R, Luo G, Zhang S C, et al. A review of single cell protein production from food waste [J]. Journal of Fudan University (Natural Science), 2022, 61(2): 229‒237.
|
[30] |
寇慧, 文晓霞, 叶思廷, 等. 微生物发酵生产饲用菌体蛋白的研究进展 [J]. 饲料工业, 2021, 42(21): 26‒33.
Kou H, Wen X X, Ye S T, et al. Research progress on microbial fermentation for production of feed bacterial proteins [J]. Feed Industry, 2021, 42(21): 26‒33.
|
[31] |
Ritala A, Häkkinen S T, Toivari M, et al. Single cell protein-state-of-the-art, industrial landscape and patents 2001—2016 [J]. Frontiers in Microbiology, 2017, 8: 2009.
|
[32] |
Hosseini S M, Khosravi-Darani K. Response surface methodology for mycoprotein production by fusarium venenatum ATCC 20334 [J]. Journal of Bioprocessing & Biotechniques, 2011, 1(1): 2‒6.
|
[33] |
Praksah P, Namasivayam S K R, Narendrakumar G. Optimization of growth parameters for elevated production of mycoprotein—Fusarium venenatum using response surface methodology [J]. Journal of Pure & Applied Microbiology, 2014, 8(6): 4843‒4849.
|
[34] |
Lo Curto R B, Tripodo M M. Yeast production from virgin grape marc [J]. Bioresource Technology, 2001, 78(1): 5‒9.
|
[35] |
周澍, 海洪, 金文英, 等. 利用缫丝废水处理过程中产生的微生物蛋白制备复合氨基酸 [J]. 环境污染与防治, 2011, 33(8): 14‒17.
Zhou S, Hai H, Jin W Y, et al. Preparation of compound amino acid from microbial protein produced in reeling wastewater treatment process [J]. Environmental Pollution & Control, 2011, 33(8): 14‒17.
|
[36] |
王冬梅, 郭书贤, 梁跃辉, 等. 酵母菌发酵啤酒生产废水产微生物油脂和菌体蛋白的研究 [J]. 中国油脂, 2017, 42(4): 108‒112, 117.
Wang D M, Guo S X, Liang Y H, et al. Production of microbial oil and bacterial protein from beer production wastewater fermented by yeast [J]. China Oils and Fats, 2017, 42(4): 108‒112, 117.
|
[37] |
Schultz N, Chang L, Hauck A, et al. Microbial production of single-cell protein from deproteinized whey concentrates [J]. Applied Microbiology and Biotechnology, 2006, 69(5): 515‒520.
|
[38] |
Bushnell C, Specht L, Almy J. State of the industry report fermentation [R]. Washington DC: The Good Food Institute, 2022.
|
[39] |
Johnson E A. Biotechnology of non-saccharomyces yeasts—The ascomycetes [J]. Applied Microbiology and Biotechnology, 2013, 97(2): 503‒517.
|
[40] |
蔺兴法, 邹方起, 莫志朋, 等. 钢铁工业尾气发酵乙醇醪液菌体蛋白的制备工艺 [J]. 化工管理, 2022 (11): 143‒145.
Lin X F, Zou F Q, Mo Z P, et al. The production of bacterial proteins from ethanol mash by fermentation of iron and steel industry tail gas [J]. Chemical Management, 2022 (11): 143‒145.
|
[41] |
高乐, 吴信, 贾文娣. 一种生物质材料高效低成本预处理结合固态发酵方法及在单细胞蛋白饲料生产中的应用: CN113729110A [P]. 2021-12-03.
Gao L, Wu X, Jia W D. An efficient and low-cost pretreatment of biomass materials combined with solid state fermentation method and its application in single-cell protein feed production: CN113729110A [P]. 2021-12-03.
|
[42] |
Song G J, Madadi M, Sun C H, et al. Surfactants facilitated glycerol organosolv pretreatment of lignocellulosic biomass by structural modification for co-production of fermentable sugars and highly reactive lignin [J]. Bioresource Technology, 2023, 383: 129178.
|
[43] |
Rages A A, Haider M M, Aydin M. Alkaline hydrolysis of olive fruits wastes for the production of single cell protein by Candida lipolytica [J]. Biocatalysis and Agricultural Biotechnology, 2021, 33: 101999.
|
[44] |
刘延峰, 邓梦婷, 陈坚. 微生物替代蛋白生物制造: 进展与展望 [J]. 中国食品学报, 2022, 22(6): 1‒5.
Liu Y F, Deng M T, Chen J. Microbial alternative protein biomanufacturing: Advances and perspectives [J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 1‒5.
|
[45] |
Xu J, Wang J, Ma C L, et al. Embracing a low-carbon future by the production and marketing of C1 gas protein [J]. Biotechnology Advances, 2023, 63: 108096.
|
[46] |
Meng J, Liu S F, Gao L, et al. Economical production of pichia pastoris single cell protein from methanol at industrial pilot scale [J]. Microbial Cell Factories, 2023, 22(1): 198.
|
[47] |
姜岷, 章文明, 马江锋, 等. 一株利用甲醇制备高赖氨酸单细胞蛋白的多形汉逊酵母菌及其应用: CN105861343B [P]. 2019-05-07.
Jiang M, Zhang W M, Ma J F, et al. A strain of polymorphic hansenomyces polymorphus using methanol to produce high lysine single cell protein and its application: CN105861343B [P]. 2019-05-07.
|
[48] |
张立宏, 冯丽平, 史春辉, 等. 酵母发酵马铃薯淀粉废弃物产单细胞蛋白的能力强化 [J]. 东北农业大学学报, 2015, 46(7): 9‒15.
Zhang L H, Feng L P, Shi C H, et al. Strengthen bioconversion of potato starch waste into single- cell protein with fermentation by Saccharomyces [J]. Journal of Northeast Agricultural University, 2015, 46(7): 9‒15.
|
[49] |
刘云肖. 可利霉素发酵菌渣生产单细胞蛋白发酵过程优化及参数相关分析 [D]. 上海: 华东理工大学(硕士学位论文), 2012.
Liu Y X. Optimization and parameter correlation analysis of single cell protein fermentation process produced by colimycin fermentation residue [D]. Shanghai: East China University of Science and Technology (Master's thesis), 2012.
|
[50] |
赵蕾, 张克英, 丁雪梅, 等. 夏橙皮渣产单细胞蛋白菌种筛选和发酵条件的优化 [J]. 食品与发酵工业, 2008, 34(10): 101‒105.
Zhao L, Zhang K Y, Ding X M, et al. Study of strains screening and fermentation conditions for SCP produce using citrus byproducts [J]. Food and Fermentation Industries, 2008, 34(10): 101‒105.
|
[51] |
鲁旭锋, 朱慧霞, 吴欢, 等. 微生物发酵稻草秸秆生产蛋白饲料培养条件优化 [J]. 中国酿造, 2021, 40(4): 66‒71.
Lu X F, Zhu H X, Wu H, et al. Optimization of culture conditions for protein feed production from straw stalks by microbial fermentation [J]. China Brewing, 2021, 40(4): 66‒71.
|
[52] |
高瑞, 段钰汀, 戴震, 等. 微生物发酵废弃生物质合成单细胞蛋白的研究现状进展 [J]. 环境工程, 2018, 36(5): 150‒155.
Gao R, Duan Y T, Dai Z, et al. Waste biomass from microbial fermentation for single cell protein production: A review [J]. Environmental Engineering, 2018, 36(5): 150‒155.
|
[53] |
Hensirisak P, Parasukulsatid P, Agblevor F A, et al. Scale-up of microbubble dispersion generator for aerobic fermentation [J]. Applied Biochemistry and Biotechnology, 2002, 101(3): 211‒227.
|
[54] |
宋安东, 张炎达, 杨大娇, 等. 合成气厌氧发酵生物反应器的研究进展 [J]. 生物加工过程, 2014, 12(6): 96‒102.
Song A, Zhang Y D, Yang D J, et al. Research progress in bioreactors for anaerobic fermentation of syngas [J]. Chinese Journal of Bioprocess Engineering, 2014, 12(6): 96‒102.
|
[55] |
高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展 [J]. 化工学报, 2021, 72(6): 3202‒3214.
Gao Z X, Guo S Q, Fei Q. Recent progress in microbial bioconversion of greenhouse gases into single cell protein [J]. CIESC Journal, 2021, 72(6): 3202‒3214.
|
[56] |
傅晓莹, 乔玮博, 史硕博. 微生物利用一碳底物生产单细胞蛋白研究进展 [J]. 食品科学, 2023, 44(3): 1‒11.
Fu X Y, Qiao W B, Shi S B. Microbial production of single cell proteins from single carbon substrates: A review [J]. Food Science, 2023, 44(3): 1‒11.
|
[57] |
Marson G V, da Costa Machado M T, de Castro R J S, et al. Sequential hydrolysis of spent brewer's yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules [J]. Process Biochemistry, 2019, 84: 91‒102.
|
[58] |
岳红卫, 韩富亮. 酿酒酵母蛋白提取工艺优化 [J]. 食品工业科技, 2015, 36(16): 304‒307, 318.
Yue H W, Han F L. Optimization of protein extraction from Saccharomyces cerevisiae [J]. Science and Technology of Food Industry, 2015, 36(16): 304‒307, 318.
|
[59] |
龚迪, 毕阳, 王军节, 等. 基于蛋白组学的水果蛋白质提取方法 [J]. 食品工业科技, 2014, 35(3): 376‒379.
Gong D, Bi Y, Wang J J, et al. Protein extraction methods of fruit based on proteomics [J]. Science and Technology of Food Industry, 2014, 35(3): 376‒379.
|
[60] |
García-Montoya I, González-Chávez S A, Salazar-Martínez J, et al. Erratum to: Expression and characterization of recombinant bovine lactoferrin in E. coli [J]. BioMetals, 2013, 26(3): 535.
|
[61] |
曾艳, 张学文, 李德茂, 等. 菌体蛋白替代鸡胸肉的炸鸡块品质变化 [J]. 现代食品科技, 2023, 39(1): 152‒159.
Zeng Y, Zhang X W, Li D M, et al. Quality change of fried chicken nuggets with chicken breast substituted by mycoprotein [J]. Modern Food Science and Technology, 2023, 39(1): 152‒159.
|
[62] |
Sakai K, Sato Y, Okada M, et al. Improved functional properties of meat analogs by laccase catalyzed protein and pectin crosslinks [J]. Scientific Reports, 2021, 11(1): 16631.
|
[63] |
李德茂, 曾艳, 周桔, 等. 生物制造食品原料市场准入政策比较及对我国的建议 [J]. 中国科学院院刊, 2020, 35(8): 1041‒1052.
Li D M, Zeng Y, Zhou J, et al. Regulation and guidance for marketing of food ingredients from biomanufacturing and policy suggestions for China [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(8): 1041‒1052.
|
/
〈 |
|
〉 |