
Development of Industry System of Microwave Dielectric Ceramics
Yang Miao, Kai Yang, Peng Zhao, Zhihua Yang, Xueyong Yu, Xiaoming Duan, Dechang Jia, Yu Zhou
Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (3) : 34-41.
Development of Industry System of Microwave Dielectric Ceramics
Microwave dielectric ceramics, owing to their ability to serve as dielectrics in microwave circuits, are widely used in communications, navigation, radar, satellite, and other fields as a key foundational material in modern communications technology. Grounded in an analysis of the current state of microwave dielectric ceramics and their corresponding industry both in China and abroad, this study identifies the challenges faced in the development of these ceramics in China and proposes a strategy for the independent development of microwave dielectric ceramics, encompassing development goals, strategies, key directions, and a development roadmap. The study aims to promote the development of microwave dielectric ceramics, facilitate the shift of the product structure from mid- to high-end products, and achieve breakthroughs in high-performance microwave dielectric ceramics preparation techniques and the independent production of upstream high-purity raw materials. Recommendations for research include strengthening the basic research and application foundations of microwave dielectric ceramics, enhancing innovative research and development in key areas of microwave communications, actively planning for 6G dielectric ceramics, and strengthening the development of the industry's ecosystem.
dielectric / microwave dielectric ceramics / microwave components / new materials
[1] |
Yang H C, Zhang S R, Yang H Y, et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams [J]. Journal of Advanced Ceramics, 2021, 10(5): 885‒932.
|
[2] |
Guo H H, Zhou D, Du C, et al. Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications [J]. Journal of Materials Chemistry C, 2020, 8(14): 4690‒4700.
|
[3] |
Guo W J, Ma Z Y, Luo Y, et al. Structure, defects, and microwave dielectric properties of Al-doped and Al/Nd Co-doped Ba4Nd9.33Ti18O54 ceramics [J]. Journal of Advanced Ceramics, 2022, 11(4): 629‒640.
|
[4] |
Liu L T, Guo W J, Yan S J, et al. Microstructure, Raman spectroscopy, THz time domain spectrum and microwave dielectric properties of Li2Ti1- x(Zn1/3Ta2/3)xO3 ceramics [J]. Ceramics International, 2023, 49(4): 6864‒6872.
|
[5] |
Yang H Y, Chai L, Liang G C, et al. Structure, far-infrared spectroscopy, microwave dielectric properties, and improved low-temperature sintering characteristics of tri-rutile Mg0.5Ti0.5TaO4 ceramics [J]. Journal of Advanced Ceramics, 2023, 12(2): 296‒308.
|
[6] |
Hsiang H I, Chen C C, Yang S Y. Microwave dielectric properties of Ca0.7Nd0.2TiO3 ceramic-filled CaO-B2O3-SiO2 glass for LTCC applications [J]. Journal of Advanced Ceramics, 2019, 8(3): 345‒351.
|
[7] |
王本力, 王兴艳. 全球电子陶瓷产业发展概况 [J]. 新材料产业, 2016 (1): 9‒12.
Wang B L, Wang X Y. General situation of global electronic ceramic industry development [J]. Advanced Materials Industry, 2016 (1): 9‒12.
|
[8] |
Richtmyer R D. Dielectric resonators [J]. Journal of Applied Physics, 1939, 10(6): 391‒398.
|
[9] |
Masse D J, Pucel R A, Readey D W, et al. A new low-loss high-k temperature-compensated dielectric for microwave applications [J]. Proceedings of the IEEE, 1971, 59(11): 1628‒1629.
|
[10] |
Reaney I M, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks [J]. Journal of the American Ceramic Society, 2006, 89(7): 2063‒2072.
|
[11] |
Narang S B, Bahel S. Low loss dielectric ceramics for microwave applications: A review [J]. Journal of Ceramic Processing Research, 2010, 11(3): 316‒321.
|
[12] |
Ohsato H. Research and development of microwave dielectric ceramics for wireless communications [J]. Journal of the Ceramic Society of Japan, 2005, 113(1323): 703‒711.
|
[13] |
马调调. 微波介质陶瓷材料应用现状及其研究方向 [J]. 陶瓷, 2019 (4): 13‒23.
Ma D D. Application status and research direction of microwave dielectric ceramics [J]. Ceramics, 2019 (4): 13‒23.
|
[14] |
Zhang J J, Zhai J W, Chou X J, et al. Microwave and infrared dielectric response of tunable Ba1- xSrxTiO3 ceramics [J]. Acta Materialia, 2009, 57(15): 4491‒4499.
|
[15] |
Song X Q, Du K, Li J, et al. Low-fired fluoride microwave dielectric ceramics with low dielectric loss [J]. Ceramics International, 2019, 45(1): 279‒286.
|
[16] |
Chen X M, Sun Y H, Zheng X H. High permittivity and low loss dielectric ceramics in the BaO-La2O3-TiO2-Ta2O5 system [J]. Journal of the European Ceramic Society, 2003, 23(10): 1571‒1575.
|
[17] |
Yue T, Li L X, Du M K, et al. Multilayer co-fired microwave dielectric ceramics in MgTiO3-Li2TiO3 system with linear temperature coefficient of resonant frequency [J]. Scripta Materialia, 2021, 205: 114185.
|
[18] |
曲秀荣, 贾德昌. 微波介质陶瓷的研究进展 [J]. 硅酸盐通报, 2006, 25(6): 144‒147.
Qu X R, Jia D C. The recent progress of microwave dielectric ceramics [J]. Bulletin of the Chinese Ceramic Society, 2006, 25(6): 144‒147.
|
[19] |
Lou W C, Mao M M, Song K X, et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications [J]. Journal of the European Ceramic Society, 2022, 42(6): 2820‒2826.
|
[20] |
Zhang L, Pu Y P, Chen M. Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3 based relaxor ferroelectrics for pulse capacitor applications [J]. Ceramics International, 2020, 46(1): 98‒105.
|
[21] |
Li R T, Xu D M, Du C, et al. Giant dielectric tunability in ferroelectric ceramics with ultralow loss by ion substitution design [J]. Nature Communications, 2024, 15(1): 3754.
|
[22] |
Hill M D, Cruickshank D B. Ceramic materials for 5G wireless communication systems [J]. American Ceramic Society Bulletin, 2019, 98(6): 20‒25.
|
[23] |
Zhou D, Pang L X, Wang D W, et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture [J]. Journal of Materials Chemistry C, 2017, 5(38): 10094‒10098.
|
[24] |
Ni L Z, Li L X, Du M K. Ultra-high-Q and wide temperature stable Ba(Mg1/3Tax)O3 microwave dielectric ceramic for 5G-oriented dielectric duplexer adhibition [J]. Journal of Alloys and Compounds, 2020, 844: 156106.
|
/
〈 |
|
〉 |