Development of Online Detection Technologies for Ore Grade

Huaiyuan Wang, Zhengyu Liu, Fuming Qu, Liancheng Wang, Xingtong Yue, Xingfan Zhang, Anlin Shao

Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (3) : 152-163.

PDF(749 KB)
PDF(749 KB)
Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (3) : 152-163. DOI: 10.15302/J-SSCAE-2024.03.013

Development of Online Detection Technologies for Ore Grade

Author information +
History +

Abstract

The ore grade is a core indicator for measuring the economic value of minerals, and its online detection capability is related to the economic benefits, environmental impact, and production intelligence level of a mining enterprise. This study discusses the application value and classification of online detection technologies for ore grade and summarizes the research and application progress of these technologies in terms of the following technical directions: radioactive, optical, electromagnetic, and machine-vision detection. Challenges faced by the development of related technologies are identified at the technical research and practical application levels. Challenges at the technical research level include (1) accuracy bottlenecks and interference factors, (2) difficulties in signal analysis and optimization, and (3) model construction and data dependency. Challenges at the practical application level include (1) radiation safety and cost-effectiveness, (2) technological breakthroughs adapted to diverse ore characteristics, and (3) stable operation and real-time feedback in harsh environments. The study further elaborates on the future development directions of online detection technologies for ore grade. Future efforts should focus on breakthroughs in exploring the forefront of multimodal fusion and intelligent perception technologies, iterating and upgrading intelligent perception and data processing algorithms, developing miniaturized/remote/intelligent equipment, and constructing and optimizing real-time dynamic monitoring network systems. Moreover, emerging technologies, such as deep learning for promoting the fusion analysis of micro and macro features, quantum computing and bioinspired algorithms, as well as intelligent sensor networks and the Internet of Things technology, are summarized. Furthermore, active actions are recommended in the following aspects: (1) technological innovation and equipment upgrading, (2) standards formulation and standardization construction, (3) deepening of the industry–education–research–application cooperation mechanism, (4) talent cultivation and team building, and (5) international cooperation and resource sharing, thereby promoting the intelligent and efficient development and utilization of mineral resources.

Graphical abstract

Keywords

ore grade / online detection / radiological testing / optical testing / electromagnetic testing / machine vision inspection

Cite this article

Download citation ▾
Huaiyuan Wang, Zhengyu Liu, Fuming Qu, Liancheng Wang, Xingtong Yue, Xingfan Zhang, Anlin Shao. Development of Online Detection Technologies for Ore Grade. Strategic Study of CAE, 2024, 26(3): 152‒163 https://doi.org/10.15302/J-SSCAE-2024.03.013

References

[1]
王青, 任凤玉‍‍. 采矿学 [M]‍. 北京: 冶金工业出版社, 2011‍.
Wang Q‍, Ren F Y. Mining science [M]‍. Beijing: Metallurgical Industry Press, 2011‍.
[2]
吴良士‍. 矿产资源评价篇(15) [J]‍. 矿床地质, 2019, 38(6): 1412‒1415‍.
Wu L S‍. Evaluation of mineral resources (15) [J]‍. Mineral Deposits, 2019, 38(6): 1412‒1415‍.
[3]
宫东峰, 张维宾, 付乐‍. 无级定价矿石贫化控制法及其应用 [J]‍. 黄金, 2008, 29(12): 23‒26‍.
Gong D F, Zhang W B, Fu L‍. Stepless-pricing ore dilution control method and its application [J]‍. Gold, 2008, 29(12): 23‒26‍.
[4]
谷存磊‍. 浅谈露天开采矿石的贫化与损失管理 [J]‍. 广东化工, 2020, 47(12): 102‒103‍.
Gu C L‍. Discussion on dilution and loss management of open-pit mining ore [J]‍. Guangdong Chemical Industry, 2020, 47(12): 102‒103‍.
[5]
Lan Z Y, Lai Z N, Zheng Y X, et al‍. Recovery of Zn, Pb, Fe and Si from a low-grade mining ore by sulfidation roasting–beneficiation–leaching processes [J]‍. Journal of Central South University, 2020, 27(1): 37‒51‍.
[6]
潘贵豪, 明世祥, 王艳辉, 等‍. 矿山技术经济指标动态优化及其应用研究 [J]‍. 金属矿山, 2008 (11): 5‒8, 42‍.
Pan G H, Ming S X, Wang Y H, et al‍. Dynamic optimization of mine technical and economical indexes and its application research [J]‍. Metal Mine, 2008 (11): 5‒8, 42‍.
[7]
刘松伟‍. 不同矿石品位矿体采矿方法的选择 [J]‍. 有色金属设计, 2000, 27(2): 7‒10, 39‍.
Liu S W‍. Selection of mining methods for ore bodies with different ore grades [J]‍. Nonferrous Metals Design, 2000, 27(2): 7‒10, 39‍.
[8]
朱乔乔, 谢桂青, 李伟‍. 鄂东矿集区矽卡岩型铁矿的叠加富集机制: 来自磁铁矿结构和矿石品位数据的制约 [J]‍. 岩石学报, 2019, 35(12): 3703‒3720‍.
Zhu Q Q, Xie G Q, Li W‍. Superposition mechanism of Fe enrichment in skarn deposits of Edong District: Constrains from magnetite texture and ore grade data [J]‍. Acta Petrologica Sinica, 2019, 35(12): 3703‒3720‍.
[9]
刘占宁, 宋宇辰, 孟海东, 等‍. 块体尺寸和估值方法对矿石品位估值的影响 [J]‍. 矿业研究与开发, 2018, 38(6): 89‒93‍.
Liu Z N, Song Y C, Meng H D, et al‍. The influences of block size and estimation methods on the valuation of ore grade [J]‍. Mining Research and Development, 2018, 38(6): 89‒93‍.
[10]
鲁挑建‍. 再论甘肃马泉金矿矿石品位分布特征及品位预测 [J]‍. 黄金科学技术, 2011, 19(2): 1‒7‍.
Lu T J‍. The ore grade distribution features and grade prediction of Maquan gold deposit, Gansu Province [J]‍. Gold Science and Technology, 2011, 19(2): 1‒7‍.
[11]
李克庆, 牛京考, 袁怀雨, 等‍. 白云鄂博铁矿磁铁矿石品位指标的优化 [J]‍. 北京科技大学学报, 2007, 29(3): 334‒337‍.
Li K Q, Niu J K, Yuan H Y, et al‍. Optimization of the grade index of magnetite ore in Baiyunebo iron mine in China [J]‍. Journal of University of Science and Technology Beijing, 2007, 29(3): 334‒337‍.
[12]
邵安林‍. "五品联动"工程管理模式的创新与实践 [J]‍. 中国工程科学, 2013, 15(11): 44‒48‍.
Shao A L‍. Innovation and practice of the "five grades ganged" engineering management mode [J]‍. Strategic Study of CAE, 2013, 15(11): 44‒48‍.
[13]
刘文胜, 李铁钢, 李克庆, 等‍. "五品联动"矿冶工程管理优化决策支持系统研究及应用 [J]‍. 金属矿山, 2015 (12): 1‒4‍.
Liu W S, Li T G, Li K Q, et al‍. Research on five-grade linkage optimization decision support system in mining and metallurgical engineering management [J]‍. Metal Mine, 2015 (12): 1‒4‍.
[14]
葛丁, 梁殿印‍. 基于X射线透射的矿石品位检测方法研究 [J]‍. 有色金属(选矿部分), 2019 (4): 87‒93‍.
Ge D, Liang D Y‍. Research on detection method of ore grade based on X-ray transmission [J]‍. Nonferrous Metals (Mineral Processing Section), 2019 (4): 87‒93‍.
[15]
Robben C, Wotruba H‍. Sensor-based ore sorting technology in mining—Past, present and future [J]‍. Minerals, 2019, 9(9): 523‍.
[16]
Li L X, Li G Z, Li H Z, et al‍. Bench-scale insight into the amenability of case barren copper ores towards XRF-based bulk sorting [J]‍. Minerals Engineering, 2018, 121: 129‒136‍.
[17]
卜兆杰, 王晓旋, 黄健强, 等‍. 粉末压片制样 –X射线荧光光谱(XRF)法测定钛铁矿中TFe、TiO2、SiO2、Al2O3、CaO、MgO的含量 [J]‍. 中国无机分析化学, 2018, 8(1): 17‒20‍.
Bu Z J, Wang X X, Huang J Q, et al‍. Determination of TFe, TiO2, SiO2, Al2O3, CaO and MgO content in ilmenite by XRF with powder pressed method [J]‍. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1): 17‒20‍.
[18]
冯丽丽, 张庆建, 管嵩, 等‍. X射线荧光光谱(XRF)法测定绿泥石中镁、铝、硅、磷、钾、钙、钛、铁元素含量 [J]‍. 中国无机分析化学, 2024, 14(3): 312‒317‍.
Feng L L, Zhang Q J, Guan S, et al‍. Determination of magnesium, aluminum, silicon, phosphorus, potassium, calcium, titanium and iron in chlorite by X-ray fluorescence spectrometry [J]‍. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(3): 312‒317‍.
[19]
王兵, 徐鼎, 秦晔琼, 等‍. X射线荧光光谱结合分类算法在铁矿石与含铁物料鉴别中的应用研究 [J]‍. 中国口岸科学技术, 2024, 6(2): 40‒46‍.
Wang B, Xu D, Qin Y Q, et al‍. Application of X-ray fluorescence spectroscopy combined with classification algorithm in the identification of iron ore and iron-containing materials [J]‍. China Port Science and Technology, 2024, 6(2): 40‒46‍.
[20]
邓述培, 范鹏飞, 唐玉霜, 等‍. X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素 [J]‍. 中国无机分析化学, 2019, 9(4): 12‒15‍.
Deng S P, Fan P F, Tang Y S, et al‍. Determination of 9 kinds of soil pollution of heavy metals elements in samples by X-ray fluorescence spectrometry [J]‍. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 12‒15‍.
[21]
罗立强, 沈亚婷, 吴晓军‍. X射线光谱分析技术发展新趋势与新方向 [J]‍. 冶金分析, 2021, 41(12): 18‒26‍.
Luo L Q, Shen Y T, Wu X J‍. Progress and trend of X-ray spectrometry [J]‍. Metallurgical Analysis, 2021, 41(12): 18‒26‍.
[22]
Mesina M B, de Jong T P R, Dalmijn W L‍. Automatic sorting of scrap metals with a combined electromagnetic and dual energy X-ray transmission sensor [J]‍. International Journal of Mineral Processing, 2007, 82(4): 222‒232‍.
[23]
Robben C, de Korte J, Wotruba H, et al‍. Experiences in dry coarse coal separation using X-ray-transmission-based sorting [J]‍. International Journal of Coal Preparation and Utilization, 2014, 34(3/4): 210‒219‍.
[24]
包锐‍. X射线透射方法在矿产品检测中的应用 [J]‍. 现代工业经济和信息化, 2023, 13(1): 132‒133, 136‍.
Bao R‍. Application of X-ray transmission method in mineral product inspection [J]‍. Modern Industrial Economy and Informationization, 2023, 13(1): 132‒133, 136‍.
[25]
叶仪铭, 陈锐, 王仁波, 等‍. 一种基于深度学习的X射线透射铀矿识别算法 [J]‍. 有色金属(选矿部分), 2023 (6): 118‒124, 139‍.
Ye Y M, Chen R, Wang R B, et al‍. A uranium ore recognition algorithm based on deep learning of X-ray transmission [J]‍. Nonferrous Metals (Mineral Processing Section), 2023 (6): 118‒124, 139‍.
[26]
洪旭, 周建斌, 倪师军, 等‍. 基于X射线透射谱的铀浓度测量方法 [J]‍. 光谱学与光谱分析, 2017, 37(11): 3641‍.
Hong X, Zhou J B, Ni S J, et al‍. Uranium determination based on X-ray transmission spectrum [J]‍. Spectroscopy and Spectral Analysis, 2017, 37(11): 3641‍.
[27]
高航, 王建英, 张雪峰, 等‍. 双能X射线透射矿物识别系统图像处理设计 [J]‍. 有色金属(选矿部分), 2021 (1): 101‒106, 111‍.
Gao H, Wang J Y, Zhang X F, et al‍. Image processing design of mineral identification system based on dual-energy X-ray transmission [J]‍. Nonferrous Metals (Mineral Processing Section), 2021 (1): 101‒106, 111‍.
[28]
崔丽娜, 彭雪清‍. 双能量X射线透射预选用于广西某低品位铅锌矿的试验研究 [J]‍. 矿业工程, 2020, 18(4): 30‒32‍.
Cui L N, Peng X Q‍. Test study on dual energy X-ray transmission Pre-concentration of a low-grade lead-zinc mine in Guangxi [J]‍. Mining Engineering, 2020, 18(4): 30‒32‍.
[29]
李德红, 苏桐龄‍. 中子活化分析原理及应用简介 [J]‍. 大学物理, 2005, 24(6): 56‒58‍.
Li D H, Su T L‍. Introduction about principle of neutron activationanalysis and its application [J]‍. College Physics, 2005, 24(6): 56‒58‍.
[30]
Latif S A, Oura Y, Ebihara M, et al‍. Prompt gamma-ray analysis (PGA) of meteorite samples, with emphasis on the determination of Si [J]‍. Journal of Radioanalytical and Nuclear Chemistry, 1999, 239(3): 577‒580‍.
[31]
宋青锋, 张伟, 龚亚林, 等‍. 利用瞬发γ中子活化分析技术对铜镍矿石进行在线检测的应用研究 [J]‍. 世界有色金属, 2014 (2): 72‒73‍.
Song Q F, Zhang W, Gong Y L, et al‍. Study on on-line detection of copper-nickel ore by prompt gamma neutron activation analysis technology [J]‍. World Nonferrous Metals, 2014 (2): 72‒73‍.
[32]
侯新生, 马英杰, 方方, 等‍. 中子活化分析在煤质分析中的应用 [J]‍. 核技术, 2001, 24(4): 264‒268‍.
Hou X S, Ma Y J, Fang F, et al‍. An application of NAA in analyzing the quality of coal [J]‍. Nuclear Techniques, 2001, 24(4): 264‒268‍.
[33]
Baechler S, Kudejova P, Jolie J, et al‍. Prompt gamma-ray activation analysis for determination of boron in aqueous solutions [J]‍. Nuclear Instruments and Methods in Physics Research A, 2002, 488(1/2): 410‒418‍.
[34]
周蓉生, 侯新生, 马英杰‍. 中子活化分析在大气环境及水环境研究中的应用 [J]‍. 核技术, 1999, 22(6): 362‒366‍.
Zhou R S, Hou X S, Ma Y J‍. The application in atmosphere and hydrology environmental research of neutron activation analysis [J]‍. Nuclear Techniques, 1999, 22(6): 362‒366‍.
[35]
张兰芝, 倪邦发, 田伟之, 等‍. 瞬发γ射线中子活化分析的现状与发展 [J]‍. 原子能科学技术, 2005, 39(3): 282‒288‍.
Zhang L Z, Ni B F, Tian W Z, et al‍. Status and development of prompt γ-ray neutron activation analysis [J]‍. Atomic Energy Science and Technology, 2005, 39(3): 282‒288‍.
[36]
Valeur B‍. Molecular fluorescence: Principles and applications [M]‍. Hoboken: Wiley‒VCH, 2001‍.
[37]
臧竞存, 邹玉林‍. 激光诱导荧光光谱法检测高纯激光晶体中的痕量稀土杂质 [J]‍. 分析仪器, 2010 (3): 55‒56‍.
Zang J C, Zou Y L‍. Determination of trace rare earth impurities in high purity laser crystals using laser-induced fluorescence [J]‍. Analytical Instrumentation, 2010 (3): 55‒56‍.
[38]
冯巍巍, 王锐, 孙培艳, 等‍. 几种典型石油类污染物紫外激光诱导荧光光谱特性研究 [J]‍. 光谱学与光谱分析, 2011, 31(5): 1168‒1170‍.
Feng W W, Wang R, Sun P Y, et al‍. The study of fluorescence spectrum using ultraviolet-laser for several typical oil pollutants [J]‍. Spectroscopy and Spectral Analysis, 2011, 31(5): 1168‒1170‍.
[39]
刘德庆, 栾晓宁, 韩晓爽, 等‍. 原油样品激光诱导荧光的时间分辨光谱特性研究 [J]‍. 光谱学与光谱分析, 2015, 35(6): 1582‍.
Liu D Q, Luan X N, Han X S, et al‍. Characterization of time-resolved laser-induced fluorescence from crude oil samples [J]‍. Spectroscopy and Spectral Analysis, 2015, 35(6): 1582‍.
[40]
周嘉俊, 李茂刚, 张天龙, 等‍. 激光诱导击穿光谱结合随机森林的稀土矿石中钪元素定量分析 [J]‍. 中国激光, 2024, 51(2): 171‒179‍.
Zhou J J, Li M G, Zhang T L, et al‍. Quantitative analysis of Sc in Rare? Earth ores via laser? Induced breakdown spectroscopy combined with random forest [J]‍. Chinese Journal of Lasers, 2024, 51(2): 171‒179‍.
[41]
邱苏玲, 李安, 王宪双, 等‍. 基于激光诱导击穿光谱的矿石中铁含量的高准确度定量分析 [J]‍. 中国激光, 2021, 48(16): 201‒210‍.
Qiu S L, Li A, Wang X S, et al‍. High-accuracy quantitatively analysis of iron content in mineral based on laser-induced breakdown spectroscopy [J]‍. Chinese Journal of Lasers, 2021, 48(16): 201‒210‍.
[42]
陆运章, 汪家升, 李威霖, 等‍. 用激光诱导击穿光谱技术定量分析矿石样品中Si和Mg [J]‍. 中国激光, 2009, 36(8): 2109‒2114‍.
Lu Y Z, Wang J S, Li W L, et al‍. Quantitative analysis of Si and Mg in ore samples using laser-induced breakdown spectroscopy [J]‍. Chinese Journal of Lasers, 2009, 36(8): 2109‒2114‍.
[43]
杨彦伟‍. 激光诱导击穿光谱铝土矿快速分选与定量检测方法研究 [D]‍. 太原: 中北大学(博士学位论文), 2022‍.
Yang Y W‍. Study on rapid separation and quantitative detection method of bauxite in laser-induced breakdown spectroscopy [D]‍. Taiyuan: North University of China (Doctoral dissertation), 2022‍.
[44]
王凯, 干福熹, 赵虹霞‍. 天然绿柱石类宝石化学成分、结构和物相的无损分析 [J]‍. 硅酸盐学报, 2015, 43(2): 205‒214‍.
Wang K, Gan F X, Zhao H X‍. Nondestructive analysis of chemical composition, structure and mineral phase of natural beryl gems [J]‍. Journal of the Chinese Ceramic Society, 2015, 43(2): 205‒214‍.
[45]
杨雅雯, 严承琳, 徐鼎, 等‍. 激光诱导击穿光谱检测铁矿石应用进展 [J]‍. 冶金分析, 2020, 40(12): 14‒20‍.
Yang Y W, Yan C L, Xu D, et al‍. Progress in the detection of iron ore by laser-induced breakdown spectroscopy [J]‍. Metallurgical Analysis, 2020, 40(12): 14‒20‍.
[46]
闫久江, 李祥友‍. 新型便携式激光诱导击穿光谱仪器及其应用研究 [J]‍. 冶金分析, 2020, 40(12): 66‒71‍.
Yan J J, Li X Y‍. Research on a new portable laser-induced breakdown spectroscopy system and its application [J]‍. Metallurgical Analysis, 2020, 40(12): 66‒71‍.
[47]
陈林宇‍. 基于特征选择的激光诱导击穿光谱方法研究——以铜矿为例 [D]‍. 绵阳: 西南科技大学(博士学位论文), 2022‍.
Chen L Y‍. Study on laser-induced breakdown spectroscopy using feature selection [D]‍. Mianyang: Southwest University of Science and Technology (Doctoral dissertation), 2022‍.
[48]
彭书瑶‍. 激光诱导击穿光谱技术在矿石样品中Si和Mg检测中的应用 [J]‍. 化工设计通讯, 2019, 45(7): 152, 208‍.
Peng S Y‍. Application of laser induced breakdown spectroscopyin detection of Si and Mg in ore samples [J]‍. Chemical Engineering Design Communications, 2019, 45(7): 152, 208‍.
[49]
刘向前, 安端阳, 张卓昆, 等‍. 激光诱导击穿光谱结合RFE-GBDT算法定量分析稀土矿石中的Fe和Y [J]‍. 化工矿物与加工, 2023, 52(3): 20‒25‍.
Liu X Q, An D Y, Zhang Z K, et al‍. Quantitative analysis of Fe and Y in rare earth ores by laser-induced breakdown spectroscopy combined with recursive feature elimination and gradient boosting decision tree algorithms [J]‍. Industrial Minerals & Processing, 2023, 52(3): 20‒25‍.
[50]
付洪波, 吴边, 王华东, 等‍. 激光诱导击穿光谱定量分析锂矿石中锂元素 [J]‍. 光谱学与光谱分析, 2022, 42(11): 3489‒3493‍.
Fu H B, Wu B, Wang H D, et al‍. Quantitative analysis of Li in lithium ores based on laser-induced breakdown spectroscopy [J]‍. Spectroscopy and Spectral Analysis, 2022, 42(11): 3489‒3493‍.
[51]
龙梅, 裴世桥‍. 近红外反射光谱学在岩石矿物研究中的应用Ⅱ‍. 快速测定地质样品中有机质 [J]‍. 岩矿测试, 2004, 23(1): 6‒10‍.
Long M, Pei S Q‍. Study on application of near-infrared reflectance spectroscopy in rock and mineral analysis Ⅱ‍. Rapid determination of organic matter in geological samples [J]‍. Rock and Mineral Analysis, 2004, 23(1): 6‒10‍.
[52]
Malley D F, Williams P C, Stainton M P‍. Rapid measurement of suspended C, N, and P from Precambrian Shield Lakes using near-infrared reflectance spectroscopy [J]‍. Water Research, 1996, 30(6): 1325‒1332‍.
[53]
毛亚纯, 温健, 付艳华, 等‍. 可见光 – 近红外光谱的矽卡岩型铁矿反演模型 [J]‍. 光谱学与光谱分析, 2022, 42(1): 68‒73‍.
Mao Y C, Wen J, Fu Y H, et al‍. Quantitative inversion model based on the visible and near-infrared spectrum for skarn-type iron ore [J]‍. Spectroscopy and Spectral Analysis, 2022, 42(1): 68‒73‍.
[54]
李孟倩, 韩秀丽, 汪金花, 等‍. 铁矿粉铁含量的高光谱分析和定量反演研究 [J]‍. 矿产综合利用, 2022 (4): 205‒210‍.
Li M Q, Han X L, Wang J H, et al‍. Study on hyperspectral analysis of iron ore powder and quantitative inversion of iron grade [J]‍. Multipurpose Utilization of Mineral Resources, 2022 (4): 205‒210‍.
[55]
赖思翰, 刘严松, 李成林, 等‍. 铅锌矿石稀散元素镉含量的高光谱反演研究 [J]‍. 光谱学与光谱分析, 2023, 43(4): 1275‒1281‍.
Lai S H, Liu Y S, Li C L, et al‍. Study on hyperspectral inversion of rare-dispersed element cadmium content in lead-zinc ores [J]‍. Spectroscopy and Spectral Analysis, 2023, 43(4): 1275‒1281‍.
[56]
王瑞军, 董双发, 孙永彬, 等‍. 典型金矿床地质 – 高光谱找矿模型构建及应用 [J]‍. 遥感信息, 2017, 32(4): 70‒82‍.
Wang R J, Dong S F, Sun Y B, et al‍. Construction of geology-hyperspectral remote sensing prospecting model of typical gold deposits and its application [J]‍. Remote Sensing Information, 2017, 32(4): 70‒82‍.
[57]
王庆凯‍. 智能选矿助力矿业行业高质量发展探讨 [J]‍. 智能矿山, 2021, 2(4): 32‒36‍.
Wang Q K‍. Discussion on intelligent mineral processing helping high-quality development of mining industry [J]‍. Journal Of Intelligent Mine, 2021, 2(4): 32‒36‍.
[58]
Wang C P, Fan M B, Cao B H, et al‍. Novel noncontact eddy current measurement of electrical conductivity [J]‍. IEEE Sensors Journal, 2018, 18(22): 9352‒9359‍.
[59]
朱思露‍. 铁精矿铁品位检测装置研究 [D]‍. 哈尔滨: 哈尔滨理工大学(硕士学位论文), 2021‍.
Zhu S L‍. Research on detecting device for iron grade of iron concentrate [D]‍. Harbin: Harbin University of Science and Technology (Master's thesis), 2021‍.
[60]
熊浩凯‍. 基于多电极电容检测的铁矿石品位测量方法研究 [D]‍. 鞍山: 辽宁科技大学(硕士学位论文), 2023‍.
Xiong H K‍. Research on iron ore grade measurement method based on multi-electrode capacitance measuring [D]‍. Anshan: University of Science and Technology Liaoning (Master's thesis of), 2023‍.
[61]
Liu X B, Wang H Y, Jing H D, et al‍. Research on intelligent identification of rock types based on faster R-CNN method [J]‍. IEEE Access, 2020, 8: 21804‒21812‍.
[62]
何文轩, 荆洪迪, 柳小波, 等‍. 基于YOLOv4-tiny的铁矿石品位识别技术研究 [J]‍. 金属矿山, 2021 (10): 150‒154‍.
He W X, Jing H D, Liu X B, et al‍. Research on iron ore grade identification technology based on YOLOv4-tiny [J]‍. Metal Mine, 2021 (10): 150‒154‍.
[63]
王李管, 陈斯佳, 贾明滔, 等‍. 基于深度学习的黑钨矿图像识别选矿方法 [J]‍. 中国有色金属学报, 2020, 30(5): 1192‒1201‍.
Wang L G, Chen S J, Jia M T, et al‍. Beneficiation method of wolframite image recognition based on deep learning [J]‍. The Chinese Journal of Nonferrous Metals, 2020, 30(5): 1192‒1201‍.
[64]
梁栋华‍. BFIPS-Ⅱ泡沫图像分析仪软件系统的设计与实现 [J]‍. 矿冶, 2011, 20(4): 102‒104‍.
Liang D H‍. Design and implementation of BFIPS-Ⅱfroth image analyzer software system [J]‍. Mining and Metallurgy, 2011, 20(4): 102‒104‍.
Funding
Funding project: Chinese Academy of Engineering project "Research on China's Mineral Resources Security Strategy"(2022-XBZD-27)
AI Summary AI Mindmap
PDF(749 KB)

Accesses

Citations

Detail

Sections
Recommended

/