Effectiveness of Secure Supply and Carbon Reduction in the Coal Sector for Strengthening the Energy Power of China

Shirong Ge, Shuqin Liu, Jinchang Liu, Bing Wang, Xiaoya An, Ling Xiang

Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (4) : 40-51.

PDF(1035 KB)
PDF(1035 KB)
Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (4) : 40-51. DOI: 10.15302/J-SSCAE-2024.04.001

Effectiveness of Secure Supply and Carbon Reduction in the Coal Sector for Strengthening the Energy Power of China

Author information +
History +

Abstract

Research on the effectiveness of coal stable supply and carbon reduction can provide robust decision-making support for the development planning of the coal sector. This study examines the potential, capacity, and resilience of coal to maintain its primary energy status, focusing on the secure supply and carbon reduction perspectives. A system dynamics model is constructed to predict the effectiveness of coal stable supply, and the carbon reduction effectiveness within the coal sector until 2060 is evaluated. The results indicate that the recoverable reserves and resource distribution of coal in China are basic guarantee for ensuring energy security. Based on the coal supply and consumption relationship in the past 20 years, it can be concluded that coal supply in China is stable and secure. In the future, the secure supply effectiveness of coal will gradually achieve a dynamic flexible balance with fluctuations. Transitioning from traditional coal-dominated energy to coal-based energy is crucial for establishing a new energy system. China's coal industry has shown significant potential for carbon emission reduction in processing and utilization, and will demonstrate strong carbon-reduction effectiveness through the development and application of technologies such as underground gasification of coal and development and utilization of oil-rich coal. By 2060, the overall carbon reduction effectiveness will reach approximately 1 × 109 t.

Graphical abstract

Keywords

energy power / coal sector / stable supply / carbon emission reduction / effectiveness estimation

Cite this article

Download citation ▾
Shirong Ge, Shuqin Liu, Jinchang Liu, Bing Wang, Xiaoya An, Ling Xiang. Effectiveness of Secure Supply and Carbon Reduction in the Coal Sector for Strengthening the Energy Power of China. Strategic Study of CAE, 2024, 26(4): 40‒51 https://doi.org/10.15302/J-SSCAE-2024.04.001

References

[1]
周守为, 朱军龙, 李清平, 等‍. 科学稳妥实现"双碳"目标, 积极推进能源强国建设 [J]. 天然气工业, 2022, 42(12): 1‒11.
Zhou S W, Zhu J L, Li Q P, et al. Scientifically and prudently achieving the goals of peak carbon emissions and carbon neutrality, actively promoting the construction of an energy power [J]. Natural Gas Industry, 2022, 42(12): 1‒11.
[2]
刘捷先‍. 基于ESG理念的碳信息披露质量对企业价值创造的影响机制研究 [D]. 合肥: 合肥工业大学(博士学位论文), 2022.
Liu J X. Research on the influence mechanism of carbon information disclosure quality on enterprise value creation based on ESG concept [D]. Hefei: Hefei University of Technology (Doctoral dissertation), 2022.
[3]
郝宇‍. 新型能源体系的重要意义和构建路径 [J]. 人民论坛, 2022 (21): 34‒37.
Hao Y. Significance and construction path of new energy system [J]. People's Tribune, 2022 (21): 34‒37.
[4]
刘满平‍. 能源政治化趋强风险下我国的策略应对 [J]. 当代石油石化, 2023, 31(12): 1‒4.
Liu M P. China's strategic response to the risk of energy politicization [J]. Petroleum & Petrochemical Today, 2023, 31(12): 1‒4.
[5]
昌灏, 黄玉婷‍. 习近平能源革命重要论述的理论阐释与实践遵循 [J]. 中国石油大学学报(社会科学版), 2024, 40(01): 79‒85.
Chang H, Huang Y T. Theoretical interpretation and practical guidance of Xi Jinping's important statements of energy revolution [J]. Journal of China University of Petroleum (Edition of Social Sciences), 2024, 40(1): 79‒85.
[6]
葛世荣, 王兵, 冯豪豪, 等‍. 煤基能源动态碳中和模式及其保供降碳效益评估 [J]. 中国工程科学, 2023, 25(5): 122‒135.
Ge S R, Wang B, Feng H H, et al. Dynamic carbon neutrality mode for coal-based energy systems and effectiveness assessment thereof [J]. Strategic Study of CAE, 2023, 25(5): 122‒135.
[7]
刘峰, 郭林峰, 赵路正‍. 双碳背景下煤炭安全区间与绿色低碳技术路径 [J]. 煤炭学报, 2022, 47(1): 1‒15.
Liu F, Guo L F, Zhao L Z. Research on coal safety range and green low-carbon technology path under the dual-carbon background [J]. Journal of China Coal Society, 2022, 47(1): 1‒15.
[8]
中国经济网‍. 2023年中国能源消费总量57.2亿吨标准煤, 比上年增长5.7% [EB/OL]. (2024-02-29)‍[2024-03-03]. http://www.ce.cn/xwzx/gnsz/gdxw/202402/29/t20240229_38916543.shtml.
China Economic Net. China's total energy consumption in 2023 will be 5.72 billion tons of standard coal, an increase of 5.7% over the previous year [EB/OL]. (2024-02-29)‍[2024-03-03]. http://www.ce.cn/xwzx/gnsz/gdxw/202402/29/t20240229_38916543.shtml.
[9]
黄震, 谢晓敏, 张庭婷‍. "双碳"背景下我国中长期能源需求预测与转型路径研究 [J]. 中国工程科学, 2022, 24(6): 8‒18.
Huang Z, Xie X M, Zhang T T. Medium-and long-term energy demand of China and energy transition pathway toward carbon neutrality [J]. Strategic Study of CAE, 2022, 24(6): 8‒18.
[10]
中华人民共和国自然资源部‍. 中国矿产资源报告2023 [M]. 北京: 地质出版社, 2023.
Ministry of Natural Resources of the People's Republic of China. China mineral Resources 2023 [M]. Beijing: Geological Publishing House, 2023.
[11]
李军, 乔中鹏, 刘治中, 等‍. 煤炭资源开发管理现状分析及对策建议 [J]. 中国煤炭, 2023, 49(9): 1‒6.
Li J, Qiao Z P, Liu Z Z, et al. Current situation analysis and proposed countermeasures of coal resource development and management [J]. China Coal, 2023, 49(9): 1‒6.
[12]
桑玉珊‍. 煤炭运输运营模式及经营对策研究 [D]. 兰州: 兰州交通大学(硕士学位论文), 2015.
Sang Y S. Study on operation mode and management suggestions of coal transportation [D]. Lanzhou: Lanzhou Jiatong University (Master's thesis), 2015.
[13]
王双明, 王虹, 任世华, 等‍. 西部地区富油煤开发利用潜力分析和技术体系构想 [J]. 中国工程科学, 2022, 24(3): 49‒57.
Wang S M, Wang H, Ren S H, et al. Potential analysis and technical conception of exploitation and utilization of tar-rich coal in Western China [J]. Strategic Study of CAE, 2022, 24(3): 49‒57.
[14]
张宏. 当前煤炭宏观经济形势分析 [J]. 中国煤炭工业, 2020 (7): 30‒33.
Zhang H. Analysis of the current macroeconomic situation of coal industry [J]. China Coal Industry, 2020 (7): 30‒33.
[15]
葛世荣, 樊静丽, 刘淑琴, 等‍. 低碳化现代煤基能源技术体系及开发战略 [J]. 煤炭学报, 2024, 49(1): 203‒223.
Ge S R, Fan J L, Liu S Q, et al. Low carbon modern coal-based energy technology system and development strategy [J]. Journal of China Coal Society, 2024, 49(1): 203‒223.
[16]
王其藩‍. 系统动力学(修订版) [M]. 上海: 上海财经大学出版社, 2009.
Wang Q F. System dynamic [M]. Shanghai: Shanghai University of Finance & Economics Press, 2009.
[17]
李君清, 李寅琪‍. 煤炭产业经济走势及煤炭企业对策研究 [J]. 中国煤炭, 2023, 49(3): 16‒22.
Li J Q, Li Y Q. Study on the development trend of coal industry economy and countermeasures of coal enterprises [J]. China Coal, 2023, 49(3): 16‒22.
[18]
王金刚, 陈昊宇‍. 全国统一大市场背景下煤炭保供体系数字化转型研究 [J]. 煤炭经济研究, 2023, 43(7): 34‒39.
Wang J G, Chen H Y. Research on digital transformation of coal supply guarantee system under the background of national unified large market [J]. Coal Economic Research, 2023, 43(7): 34‒39.
[19]
宋晓波‍. 后俄乌冲突时代我国煤炭产业绿色发展策略研究 [J]. 中国煤炭, 2023, 49(9): 15‒22.
Song X B. Research on the green development strategy of China's coal industry in the post Russia-Ukraine conflict era [J]. China Coal, 2023, 49(9): 15‒22.
[20]
程晓强, 崔峰, 陈建强, 等‍. 基于系统动力学的煤矿投入管理仿真分析 [J]. 矿业安全与环保, 2019, 46(6): 124‒130.
Cheng X Q, Cui F, Chen J Q, et al. Simulation analysis of coal mine input management based on system dynamics [J]. Mining Safety & Environmental Protection, 2019, 46(6): 124‒130.
[21]
任世华, 谢亚辰, 焦小淼, 等‍. 煤炭开发过程碳排放特征及碳中和发展的技术途径 [J]. 工程科学与技术, 2022, 54(1): 60‒68.
Ren S H, Xie Y C, Jiao X M, et al. Characteristics of carbon emissions during coal development and technical approaches for carbon neutral development [J]. Advanced Engineering Sciences, 2022, 54(1): 60‒68.
[22]
袁亮‍. 煤炭工业碳中和发展战略构想 [J]. 中国工程科学, 2023, 25(5): 103‒110.
Yuan L. Strategic conception of carbon neutralization in coal industry [J]. Strategic Study of CAE, 2023, 25(5): 103‒110.
[23]
刘中民‍. 现代煤化工是煤炭清洁高效利用重要途径 [J]. 中国石油企业, 2023 (6): 10.
Liu Z M. Modern coal chemical industry is an important way for clean and efficient utilization of coal [J]. China Petroleum Enterprise, 2023 (6): 10.
[24]
潘月军‍. 新形势下我国煤炭资源高效清洁利用途径分析 [J]. 洁净煤技术, 2023, 29(S2): 807‒809.
Pan Y J. Analysis on the approaches of efficient and clean utilization of China's coal resources under the new situation [J]. Clean Coal Technology, 2023, 29(S2): 807‒809.
[25]
Zhang Y, Yuan Z W, Margni M, et al. Intensive carbon dioxide emission of coal chemical industry in China [J]. Applied Energy, 2019, 236: 540‒550.
[26]
Liu Y, Qian Y, Xiao H H, et al. Techno-economic and environmental analysis of coal-based synthetic natural gas process in China [J]. Journal of Cleaner Production, 2017, 166: 417‒424.
[27]
Yi Q, Wu G S, Gong M H, et al. A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas [J]. Applied Energy, 2017, 193: 149‒161.
[28]
Liu H, Liu S Q. Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification [J]. International Journal of Hydrogen Energy, 2021, 46(14): 9630‒9643.
[29]
张源, 顾斌, 周长冰, 等‍. 煤炭地下气化过程产气特征数值模拟研究 [J]. 采矿与安全工程学报, 2022, 39(6): 1169‒1176.
Zhang Y, Gu B, Zhou C B, et al. Numerical simulation on gas production characteristics during underground coal gasification [J]. Journal of Mining & Safety Engineering, 2022, 39(6): 1169‒1176.
[30]
Li J J, Cheng W J. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification [J]. International Journal of Hydrogen Energy, 2020, 45(51): 27979‒27993.
Funding
Chinese Academy of Engineering project "Strategic Research on Promoting the Construction of Energy Power"(2022-PP-03); "Research on the Scientific System and Strategic Path of Carbon Neutral Development in China's Coal Industry"(2022-XBZD-09); "Research on China's Energy Security Strategy"(2022-JB-05); "Research on China's High Quality Development Strategy and Prospective Technology System"(2023-JB-08)
AI Summary AI Mindmap
PDF(1035 KB)

Accesses

Citations

Detail

Sections
Recommended

/