Development Strategy of Flexible Resources in China's Power System under the Carbon Peaking and Carbon Neutrality Goals

Zheng Li, Weiqi Li, Zhongwei Zhang, Gan Chang, Junfu Lyu, Guangxi Yue, Licheng Li, Weidou Ni

Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (4) : 108-120.

PDF(922 KB)
PDF(922 KB)
Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (4) : 108-120. DOI: 10.15302/J-SSCAE-2024.04.018

Development Strategy of Flexible Resources in China's Power System under the Carbon Peaking and Carbon Neutrality Goals

Author information +
History +

Abstract

Vigorously developing new energy sources is an important approach to achieving the carbon peaking and carbon neutrality goals. However, the randomness, volatility, and intermittency of new energy pose severe challenges to the supply-demand balance and stability of the electric power system. Therefore, there is an urgent need to develop diversified flexible resources to guarantee the system's safe and stable operation. This study summarizes the electricity demand and the power structure development pathways in China under the carbon neutrality goal. Based on this, it analyzes the different flexibility demands of electric power systems with different proportions of wind and solar power generation capacities and elaborates on the characteristics of various types of flexible resources needed for power generation, transmission, load, and storage from four aspects: peak capacity (adequacy), ramping flexibility, stability, and inertia. Drawing from the international experience regarding flexible resource development, we propose the principles for flexible resource development: supply security guarantee, low-carbon development, and economic optimization. Considering the existing problems in the flexible resource development in China, we propose a flexible resource development pathway that aligns with the emission reduction goal of the power sector and the medium- to long-term development trend of the electric power structure of China. Furthermore, key initiatives to ensure the development of flexible resources are proposed from five aspects: power source, power grid, load, energy storage, and market mechanism.

Graphical abstract

Keywords

carbon peaking and carbon neutrality goals / electric power system / high proportion of wind and solar power generation / flexible resources / development pathway

Cite this article

Download citation ▾
Zheng Li, Weiqi Li, Zhongwei Zhang, Gan Chang, Junfu Lyu, Guangxi Yue, Licheng Li, Weidou Ni. Development Strategy of Flexible Resources in China's Power System under the Carbon Peaking and Carbon Neutrality Goals. Strategic Study of CAE, 2024, 26(4): 108‒120 https://doi.org/10.15302/J-SSCAE-2024.04.018

References

[1]
习近平‍‍. 高举中国特色社会主义伟大旗帜, 为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告 [EB/OL]‍. (2022-10-25)[2024-02-21]‍. https://www‍.gov‍.cn/xinwen/2022-10/25/content_5721685‍.htm‍.
Xi J P‍. Hold high the great banner of socialism with Chinese characteristics and strive in unity to build a modern socialist country in all respects——Report to the 20th National Congress of the Communist Party of China‍ [EB/OL]‍. (2022-10-25)[2024-02-21]‍. https://www‍.gov‍.cn/xinwen/2022-10/25/content_5721685‍.htm‍.
[2]
中国电力企业联合会‍. 中国电力行业年度发展报告—2020 [M]‍. 北京: 中国建材工业出版社, 2020‍.
China Electricity Council‍. Annual development report of China's power industry—2020 [M]‍. Beijing: China Building Materials Press, 2020‍.
[3]
李政, 陈思源, 董文娟, 等‍. 碳约束条件下电力行业低碳转型路径研究 [J]‍. 中国电机工程学报, 2021, 41(12): 3987‒4001‍.
Li Z, Chen S Y, Dong W J, et al‍. Low carbon transition pathway of power sector under carbon emission constraints [J]‍. Proceedings of the CSEE, 2021, 41(12): 3987‒4001‍.
[4]
舒印彪, 张丽英, 张运洲, 等‍. 我国电力碳达峰、碳中和路径研究 [J]‍. 中国工程科学, 2021, 23(6): 1‒14‍.
Shu Y B, Zhang L Y, Zhang Y Z, et al‍. Carbon peak and carbon neutrality path for China's power industry [J]‍. Strategic Study of CAE, 2021, 23(6): 1‒14‍.
[5]
饶宏, 韩丰, 陈政, 等‍. 我国电力安全供应保障策略研究 [J]‍. 中国工程科学, 2023, 25(2): 100‒110‍.
Rao H, Han F, Chen Z, et al‍. Strategy for guaranteeing power supply security of China [J]‍. Strategic Study of CAE, 2023, 25(2): 100‒110‍.
[6]
国家发展和改革委员会, 国家能源局‍. 关于促进新时代新能源高质量发展的实施方案 [EB/OL]‍. (2022-05-14)[2024-02-21]‍. http://zfxxgk‍.nea‍.gov‍.cn/2022-05/30/c_1310608539‍.htm‍.
National Development and Reform Commission, National Energy Administration‍. Implementation plan for promoting high quality development of new energy in the new era [EB/OL]‍. (2022-05-14)[2024-02-21]‍. http://zfxxgk‍.nea‍.gov‍.cn/2022-05/30/c_1310608539‍.htm‍.
[7]
中国电力企业联合会‍. 2023—2024年度全国电力供需形势分析预测报告 [EB/OL]‍. (2024-01-30)[2024-02-21]‍. https://www‍.cec‍.org‍.cn/detail/index‍.html?3-330280‍.
China Electricity Council‍. 2023—2024 national electricity supply and demand situation analysis and prediction report [EB/OL]‍. (2024-01-30)[2024-02-21]‍. https://www‍.cec‍.org‍.cn/detail/index‍.html?3-330280‍.
[8]
鲁宗相, 林弋莎, 乔颖, 等‍. 极高比例可再生能源电力系统的灵活性供需平衡 [J]‍. 电力系统自动化, 2022, 46(16): 3‒16‍.
Lu Z X, Lin Y S, Qiao Y, et al‍. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy [J]‍. Automation of Electric Power Systems, 2022, 46(16): 3‒16‍.
[9]
舒印彪, 陈国平, 贺静波, 等‍. 构建以新能源为主体的新型电力系统框架研究 [J]‍. 中国工程科学, 2021, 23(6): 61‒69‍.
Shu Y B, Chen G P, He J B, et al‍. Building a new electric power system based on new energy sources [J]‍. Strategic Study of CAE, 2021, 23(6): 61‒69‍.
[10]
鲁宗相, 李海波, 乔颖‍. 含高比例可再生能源电力系统灵活性规划及挑战 [J]‍. 电力系统自动化, 2016, 40(13): 147‒158‍.
Lu Z X, Li H B, Qiao Y‍. Power system flexibility planning and challenges considering high proportion of renewable energy [J]‍. Automation of Electric Power Systems, 2016, 40(13): 147‒158‍.
[11]
Holttinen H, Tuohy A, Milligan M, et al‍. The flexibility workout: Managing variable resources and assessing the need for power system modification [J]‍. IEEE Power and Energy Magazine, 2013, 11(6): 53‒62‍.
[12]
International Energy Agency‍. Empowering variable renewables-options for flexible electricity systems [R]‍. Paris: International Energy Agency, 2009‍.
[13]
井浩然, 赵红生, 姚伟, 等‍. 含分布式变速抽水蓄能的新能源发电系统灵活性资源规划 [J]‍. 电力自动化设备, 2023, 43(11): 117‒123, 173‍.
Jing H R, Zhao H S, Yao W, et al‍. Flexible resource planning of renewable generation systems with distributed variable speed pumped storages [J]‍. Electric Power Automation Equipment, 2023, 43(11): 117‒123, 173‍.
[14]
杨修宇, 刘沛烨, 孙勇, 等‍. 考虑灵活性需求演化规律的灵活性资源动态规划方法 [J]‍. 电力建设, 2023, 44(9): 3‒12‍.
Yang X Y, Liu P Y, Sun Y, et al‍. Dynamic planning method for flexible resources considering evolution of flexibility requirements [J]‍. Electric Power Construction, 2023, 44(9): 3‒12‍.
[15]
程杉, 傅桐, 李沣洋, 等‍. 含高渗透可再生能源的配电网灵活性供需协同规划 [J]‍. 电力系统保护与控制, 2023, 51(22): 1‒12‍.
Cheng S, Fu T, Li F Y, et al‍. Flexible supply demand collaborative planning for distribution networks with high penetration of renewable energy [J]‍. Power System Protection and Control, 2023, 51(22): 1‒12‍.
[16]
杨跃, 安然然, 梁晓兵, 等‍. 计及灵活性约束的配电网 ‒ 微电网灵活性资源协同规划模型 [J]‍. 广东电力, 2023, 36(8): 54‒69‍.
Yang Y, An R R, Liang X B, et al‍. Collaborative planning model of distribution network-microgrid flexibility resources with flexibility constraints [J]‍. Guangdong Electric Power, 2023, 36(8): 54‒69‍.
[17]
杜维柱, 白恺, 李海波, 等‍. 兼顾保供电/消纳的源荷储灵活性资源优化规划 [J]‍. 电力建设, 2023, 44(9): 13‒23‍.
Du W Z, Bai K, Li H B, et al‍. Source-load-storage flexible resource optimization planning that takes into account power supply and accommodation [J]‍. Electric Power Construction, 2023, 44(9): 13‒23‍.
[18]
郇政林, 刘杰, 徐沈智, 等‍. 面向高比例新能源接入的源 ‒ 荷 ‒ 储灵活性资源协调规划 [J]‍. 电网与清洁能源, 2022, 38(7): 107‒117‍.
Huan Z L, Liu J, Xu S Z, et al‍. Source-load-storage flexibility resource coordinated planning for high proportion of renewable energy [J]‍. Power System and Clean Energy, 2022, 38(7): 107‒117‍.
[19]
金晨, 任大伟, 肖晋宇, 等‍. 支撑碳中和目标的电力系统源 ‒ 网 ‒ 储灵活性资源优化规划 [J]‍. 中国电力, 2021, 54(8): 164‒174‍.
Jin C, Ren D W, Xiao J Y, et al‍. Optimization planning on power system supply-grid-storage flexibility resource for supporting the "carbon neutrality" target of China [J]‍. Electric Power, 2021, 54(8): 164‒174‍.
[20]
赵东元, 胡楠, 傅靖, 等‍. 提升新能源电力系统灵活性的中国实践及发展路径研究 [J]‍. 电力系统保护与控制, 2020, 48(24): 1‒8‍.
Zhao D Y, Hu N, Fu J, et al‍. Research on the practice and road map of enhancing the flexibility of a new generation power system in China [J]‍. Power System Protection and Control, 2020, 48(24): 1‒8‍.
[21]
中国电力圆桌项目课题组‍. 电力系统灵活性提升: 技术路径、经济性与政策建议 [EB/OL]‍. (2022-07-18)[2024-02-21]‍. http://www‍.nrdc‍.cn/Public/uploads/2022-07-18/62d4c2e313df1‍.pdf‍.
China Electric Power Roundtable Project Research Group‍. Improving power system flexibility: Technical paths, economics and policy recommendations [EB/OL]‍. (2022-07-18)[2024-02-21]‍. http://www‍.nrdc‍.cn/Public/uploads/2022-07-18/62d4c2e313df1‍.pdf‍.
[22]
清华大学气候变化与可持续发展研究院‍. 《中国长期低碳发展战略与转型路径研究》综合报告 [M]‍. 北京: 中国环境出版集团, 2021‍.
Institute of Climate Change and Sustainable Development Tsinghua University‍. Research on the strategy and pathway of low-carbon transition in China: Synthesis report [M]‍. Beijing: China Environ‐mental Science Press, 2021‍.
[23]
Cui R Y, Hultman N, Cui D Y, et al‍. A plant-by-plant strategy for high-ambition coal power phaseout in China [J]‍. Nature Communications, 2021, 12(1): 1468‍.
[24]
吴郧, 余碧莹, 邹颖, 等‍. 碳中和愿景下电力部门低碳转型路径研究 [J]‍. 中国环境管理, 2021, 13(3): 48‒55‍.
Wu Y, Yu B Y, Zou Y, et al‍. The path of low-carbon transformation in China's power sector under the vision of carbon neutrality [J]‍. Chinese Journal of Environmental Management, 2021, 13(3): 48‒55‍.
[25]
Zhang Z Y, Du E S, Teng F, et al‍. Modeling frequency dynamics in unit commitment with a high share of renewable energy [J]‍. IEEE Transactions on Power Systems, 2020, 35(6): 4383‒4395‍.
[26]
International Energy Agency‍. Roadmap for carbon neutrality in China's energy system [EB/OL]‍. (2021-09-23)[2024-03-21]. https://www‍.iea‍.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china?language=zh‍.
[27]
国家太阳能光热产业技术创新战略联盟‍. 中国太阳能热发电行业蓝皮书 [R]‍. 北京: 国家太阳能光热产业技术创新战略联盟, 2023‍.
National Solar Thermal Industry Technology Innovation Strategic Alliance‍. China solar thermal power generation industry blue book [R]‍. Beijing: National Solar Thermal Industry Technology Innovation Strategic Alliance, 2023‍.
[28]
林水静‍. 到2027年存量煤电机组实现"应改尽改"——煤电机组灵活性改造有了新目标 [N]‍. 中国能源报, 2024-03-25(10)‍.
Lin S J‍. By 2027, the stock of coal-fired power units will achieve "all that should be improved": New goals have been set for the flexibility transformation of coal-fired power units [N]‍. China Energy News, 2024-03-25 (10)‍.
[29]
中关村储能产业技术联盟‍. 储能产业研究白皮书(2024) [EB/OL]‍. (2024-04-10)[2024-05-20]‍. http://www‍.esresearch‍.com‍.cn‍.
China Energy Storage Alliance. White paper on energy storage industry research (2024) [EB/OL]. (2024-04-10)[2024-05-20]‍. http://www‍.esresearch‍.com‍.cn‍.
[30]
中国电力企业联合会‍. 2023年度电化学储能电站行业统计数据 [EB/OL]‍. (2024-03-27)[2024-05-20]‍. http://cnnes‍.cc/shichang/zhishu/20240327/7561‍.html‍.
China Electricity Council‍. 2023 electrochemical energy storage station industry statistics [EB/OL]‍. (2024-03-27)[2024-05-20]‍. http://cnnes‍.cc/shichang/zhishu/20240327/7561‍.html‍.
[31]
何颖源, 陈永翀, 刘勇, 等‍. 储能的度电成本和里程成本分析 [J]‍. 电工电能新技术, 2019, 38(9): 1‒10‍.
He Y Y, Chen Y C, Liu Y, et al‍. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies [J]‍. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1‒10‍.
[32]
姚昕, 孙永平‍. "双碳" 目标下的跨区域输电:突出问题及完善对策 [J]‍. 国家治理, 2022 (18): 34‒37‍.
Yao X, Sun Y P‍. Cross-regional electricity transmission under the carbon peaking and carbon neutrality goals: Major issues and the countermeasures [J]‍. Governance, 2022 (18): 34‒37‍.
[33]
王鹏, 杜瑜铃, 王雁凌, 等‍. 欧洲战略备用机制对我国发电容量充裕性问题的启示 [J]‍. 电力建设, 2022, 43(10): 16‒25‍.
Wang P, Du Y L, Wang Y L, et al‍. Enlightenment of European strategic reserve mechanism on the adequacy of power generation capacity in China [J]‍. Electric Power Construction, 2022, 43(10): 16‒25‍.
[34]
Simon M, Dr B S, Thorsten L‍. Climate-neutral power system 2035: How the German power sector can become climate neutral by 2035 [EB/OL]‍.(2022-06-23)[2024-03-21]‍. https://static‍.agora-energiewende‍.de/fileadmin/Projekte/2021/2021_11_DE_KNStrom2035/AEW_KNStrom2035_Summary_EN‍.pdf‍.
[35]
李娜娜, 赵晏强, 王同涛, 等. 国际盐穴储能战略与科技发展态势分析 [J]‍. 中国科学院院刊, 2021, 36(10): 1248‒1252‍.
Li N N, Zhao Y Q, Wang T T, et al. Analysis of international salt cave energy storage strategy and scientific and technological development trend [J]‍. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1248‒1252‍.
[36]
赵腾, 高艺, 邬炜, 等‍. 欧洲大范围跨国电力互联在极端天气下电力安全保供中的作用分析 [J]‍. 全球能源互联网, 2024, 7(1): 14‒24‍.
Zhao T, Gao Y, Wu W, et al‍. Analysis of large-scale cross-border interconnected power grids in Europe for ensuring secure electricity supply under extreme weather conditions [J]‍. Journal of Global Energy Interconnection, 2024, 7(1): 14‒24‍.
[37]
Ciferri D, D'Errico M C, Polinori P‍. Integration and convergence in European electricity markets [J]‍. Economia Politica, 2020, 37(2): 463‒492‍.
[38]
Energy-Charts‍. Total net electricity generation in Germany in 2023 [EB/OL]‍.(2024-04-08)[2024-05-18]‍. https://www‍.energy-charts‍.info/charts/power/chart‍.htm?l=en&c=DE&year=2023&interval=year&source=total‍.
[39]
Smard‍. Balancing energy [EB/OL]‍. (2022-1-18)[2024-05-18]‍. https://www‍.smard‍.de/page/en/wiki-article/6076/6086‍.
[40]
郭剑波, 王铁柱, 罗魁, 等‍. 新型电力系统面临的挑战及应对思考 [J]‍. 新型电力系统, 2023, 1(1): 32‒43‍.
Guo J B, Wang T Z, Luo K, et al‍. Development of new power systems: Challenges and solutions [J]‍. New Type Power Systems, 2023, 1(1): 32‒43‍.
[41]
任大伟, 侯金鸣, 肖晋宇, 等‍. 支撑双碳目标的新型储能发展潜力及路径研究 [J]‍. 中国电力, 2023, 56(8): 17‒25‍.
Ren D W, Hou J M, Xiao J Y, et al‍. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality [J]‍. Electric Power, 2023, 56(8): 17‒25‍.
[42]
国家能源局‍. 抽水蓄能中长期发展规划 [EB/OL]‍. (2021-9-8)[2024-3-21]‍. http://zfxxgk‍.nea‍.gov‍.cn/1310193456_16318589869941n‍.pdf‍.
National Energy Administration‍. Medium-and long term development plan for pumped storage energy [EB/OL]‍. (2021-9-8)[2024-03-21]‍. http://zfxxgk‍.nea‍.gov‍.cn/1310193456_16318589869941n‍.pdf‍.
[43]
中国化学与物理电源行业协会‍. 2024年中国新型储能产业发展白皮书 [R]‍. 杭州: 中国化学与物理电源行业协会储能应用分会课题组, 2024‍.
China Chemical and Physical Power Industry Association‍. White paper on the development of China's new energy storage industry in 2024 [R]‍. Hangzhou: Research Group of the Energy Storage Application Branch of China Chemical and Physical Power Industry Association, 2024‍.
[44]
袁家海, 张凯‍. "碳中和" 目标下, 新型电力系统中常规煤电退出路径研究 [J]‍. 中国能源, 2021, 43(6): 19‒26, 66‍.
Yuan J H, Zhang K‍. Coal power phase-out pathway in the new power system under carbon neutral target [J]‍. Energy of China, 2021, 43(6): 19‒26, 66‍.
[45]
吴珊, 边晓燕, 张菁娴, 等‍. 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述 [J]‍. 电工技术学报, 2023, 38(6): 1662‒1677‍.
Wu S, Bian X Y, Zhang J X, et al‍. A review of domestic and foreign ancillary services market for improving flexibility of new power system [J]‍. Transactions of China Electrotechnical Society, 2023, 38(6): 1662‒1677‍.
Funding
Chinese Academy of Engineering project "Research on Several Major Issues of Energy and Mineral Resource Conservation Strategies"(2023-XBZD-17)
AI Summary AI Mindmap
PDF(922 KB)

Accesses

Citations

Detail

Sections
Recommended

/