Fundamental Technical Problems and Countermeasures in the Low-Carbon Construction of Canal Engineering

Jianzhuang Xiao, Caihua Yu, Bing Xia, Liquan Xie, Yonghui An, Yaofei Cheng, Xuwen Xiao

Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (4) : 210-221.

PDF(1402 KB)
PDF(1402 KB)
Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (4) : 210-221. DOI: 10.15302/J-SSCAE-2024.04.020

Fundamental Technical Problems and Countermeasures in the Low-Carbon Construction of Canal Engineering

Author information +
History +

Abstract

Exploring the fundamental technical problems and countermeasures will help improve the theories and technologies regarding the low-carbon construction of canal engineering (LCCCE) and provide references for future canal construction. This study reviews the history of canal engineering in China and clarifies the necessity of LCCCE from the perspectives of engineering commonality and canal individuality. The difficulty of canal engineering in the new situation is to improve low-carbon construction on the basis of ensuring reliability. Therefore, the fundamental technical problems of LCCCE focus on low-carbon security. Based on the practice of low-carbon technology research in the century-long project of the Pinglu Canal, this study focuses on the following fundamental technical problems: (1) efficient application of canal building materials, (2) efficient utilization of old and new structures, (3) multi-dimensional recycling of solid wastes, (4) durability guarantee and biodiversity protection of canals, and (5) low-energy consumption in canal construction, operation, and maintenance. A low-carbon construction technology framework consisting of “reduce, reuse, recycle, resilience, and renewable energy” (5R) is proposed to accurately address the fundamental technical problems of LCCCE. The LCCCE is still in its infancy, and it is recommended that the academic and engineering communities continue to focus on this emerging field.

Graphical abstract

Keywords

canal engineering / low-carbon construction / reduce / reuse / recycle / resilience / renewable energy

Cite this article

Download citation ▾
Jianzhuang Xiao, Caihua Yu, Bing Xia, Liquan Xie, Yonghui An, Yaofei Cheng, Xuwen Xiao. Fundamental Technical Problems and Countermeasures in the Low-Carbon Construction of Canal Engineering. Strategic Study of CAE, 2024, 26(4): 210‒221 https://doi.org/10.15302/J-SSCAE-2024.04.020

References

[1]
Maurer S, Rauch F. Economic geography aspects of the Panama Canal [J]. Oxford Economic Papers, 2022, 75(1): 142‒162.
[2]
肖建庄, 沈剑羽, 马少坤, 等. 平陆运河土石方多路径利用的基础问题与解决途径 [J]. 中国工程科学, 2024, 26(1): 251‒262.
Xiao J Z, Shen J Y, Ma S K, et al. Multi-path utilization of earthwork in Pinglu Canal: Basic problems and solutions [J]. Strategic Study of CAE, 2024, 26(1): 251‒262.
[3]
薛瑞泽, 王彦霖. 隋唐大运河所运物品与南北经济交流 [J]. 河南社会科学, 2018, 26: 111‒116.
Xue R Z, Wang Y L. Goods transported in the Grand Canale and economic exchanges between the North and the South in Sui and Tang Dynasties [J]. Henan Social Sciences, 2018, 26: 111‒116.
[4]
刘宁. 平陆运河工程建设关键问题研究与思考 [J]. 水运工程, 2024 (6): 1‒11.
Liu N. Research and contemplation on key issues in construction of Pinglu Canal Project [J]. Port & Waterway Engineering, 2024 (6): 1‒11.
[5]
宁武. 平陆运河建设理念与方案探讨 [J]. 水利水运工程学报, 2023 (2): 162‒168.
Ning W. Discussion on the construction concept and scheme of Pinglu Canal [J]. Hydro-Science and Engineering, 2023 (2): 162‒168.
[6]
肖建庄, 夏冰, 肖绪文, 等. 混凝土结构低碳设计理论前瞻 [J]. 科学通报, 2022, 67(28): 3425‒3438.
Xiao J Z, Xia B, Xiao X W, et al. Prospects for low-carbon design theory of concrete structures [J]. Chinese Science Bulletin, 2022, 67(28): 3425‒3438.
[7]
肖建庄, 张航华, 唐宇翔, 等. 废弃混凝土再生原理与再生混凝土基本问题 [J]. 科学通报, 2023, 68(5): 510‒523.
Xiao J Z, Zhang H H, Tang Y X, et al. Principles for waste concrete recycling and basic problems of recycled concrete [J]. Chinese Science Bulletin, 2023, 68(5): 510‒523.
[8]
Project Team on the Strategy and Pathway for Peaked Carbon Emissions and Carbon Neutrality. Analysis of a peaked carbon emission pathway in China toward carbon neutrality [J]. Engineering, 2021, 7(12): 1673‒1677.
[9]
李云鹏, 吕娟, 万金红, 等. 中国大运河水利遗产现状调查及保护策略探讨 [J]. 水利学报, 2016, 47(9): 1177‒1187.
Li Y P, Lyu J, Wan J H, et al. Research on conservation strategy of water heritages based on investigation of the Grand Canal in China [J]. Journal of Hydraulic Engineering, 2016, 47(9): 1177‒1187.
[10]
平陆运河三大枢纽全面进入船闸主体施工阶段: 青年枢纽船闸主体结构首仓混凝土顺利浇筑 [EB/OL]. (2024-04-30)[2024-06-20]. https://www.nanning.gov.cn/ywzx/nnyw/2024nzwdt/t5912375.html.
Three major hubs of the Pinglu Canal enter the main construction stage of the locks: The first concrete for the main structure of the locks of the Youth Hub was successfully poured [EB/OL]. (2024-04-30)[2024-06-20]. https://www.nanning.gov.cn/ywzx/nnyw/2024nzwdt/t5912375.html.
[11]
肖建庄, 曾亮, 夏冰, 等. 拆解工程学理论架构与基本方法 [J]. 建筑结构学报, 2022, 43(2): 197‒206.
Xiao J Z, Zeng L, Xia B, et al. Theoretical framework and fundamental method for deconstruction engineering [J]. Journal of Building Structures, 2022, 43(2): 197‒206.
[12]
吴平. 超高韧性水泥基复合材料在强动载作用下的动力响应及动态本构模型 [D]. 杭州: 浙江大学(博士学位论文), 2022.
Wu P. Dynamic response and dynamic constitutive model of ultra-high toughness cement-based composites under strong dynamic load [D]. Hangzhou: Zhejiang University (Doctoral dissertation), 2022.
[13]
美国巴尔的摩撞桥事故后续初步报告: 货轮撞桥前多次停电 [EB/OL]. (2024-05-15)[2024-06-20]. https://tv.cctv.com/2024/05/15/VIDEsFUkb2cIbWugT9Do5JTf240515.shtml.
U.S. Baltimore bridge crash after the initial report: The cargo ship hit the bridge before the repeated power outages [EB/OL]. (2024-05-15)[2024-06-20].https://tv.cctv.com/2024/05/15/VIDEsFUkb2cIbWugT9Do5JTf240515.shtml.
[14]
Yang Q Y, Yang S S. China’s canal project threatens biodiversity [J]. Science, 2023, 381(6658): 612.
[15]
中国建筑节能协会建筑能耗与碳排放数据专委会. 2021中国建筑能耗与碳排放研究报告: 省级建筑碳达峰形势评估 [R]. 北京: 中国建筑节能协会建筑能耗与碳排放数据专委会, 2021.
Professional Committee of Building Energy and Emissions, China Association of Buliding Energy Efficiency. 2021 China building energy consumption and carbon emissions research report: Evaluation of provincial building carbon peaking situation [R]. Beijing: Professional Committee of Building Energy and Emissions, China Association of Buliding Energy Efficiency, 2021.
[16]
Scrivener K, Martirena F, Bishnoi S, et al. Calcined clay limestone cements (LC3) [J]. Cement and Concrete Research, 2018, 114: 49‒56.
[17]
Ye T H, Xiao J Z, Duan Z H, et al. Geopolymers made of recycled brick and concrete powder—A critical review [J]. Construction and Building Materials, 2022, 330: 127232.
[18]
McLellan B C, Williams R P, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement [J]. Journal of Cleaner Production, 2011, 19(9/10): 1080‒1090.
[19]
Yang X L, Liu Y S, Liang J L, et al. Straightening methods for RCA and RAC—A review [J]. Cement and Concrete Composites, 2023, 141: 105145.
[20]
肖建庄, 俞才华, 肖绪文, 等. 废弃防水卷材资源化基本问题与发展路径研究 [J]. 中国工程科学, 2023, 25(5): 210‒221.
Xiao J Z, Yu C H, Xiao X W, et al. Fundamental problems and development paths for reclamation of waste waterproof membranes [J]. Strategic Study of CAE, 2023, 25(5): 210‒221.
[21]
Keoleian G A, Kendall A, Dettling J E, et al. Life cycle modeling of concrete bridge design: Comparison of engineered cementitious composite link slabs and conventional steel expansion joints [J]. Journal of Infrastructure Systems, 2005, 11(1): 51‒60.
[22]
Yu R, Spiesz P, Brouwers H J H. Mix design and properties assessment of Ultra-high performance fibre reinforced concrete (UHPFRC) [J]. Cement and Concrete Research, 2014, 56: 29‒39.
[23]
李庆华, 暴宁, 王国仲. UHTCC与钢材界面的剪切型断裂试验研究 [J]. 浙江大学学报(工学版), 2022 (1): 84‒91.
Li Q H, Bao N, Wang G Z. Experimental study on interface shear fracture of UHTCC and steel [J]. Journal of Zhejiang University (Engineering Science), 2022 (1): 84‒91.
[24]
侯利军, 徐冉, 张秀芳, 等. 纤维网-超高韧性水泥基复合材料加固钢筋混凝土柱抗震性能研究 [J]. 建筑结构学报, 2022, 43(12): 59‒70.
Hou L J, Xu R, Zhang X F, et al. Seismic behavior of reinforced concrete columns strengthened by textile-UHTCC [J]. Journal of Building Structures, 2022, 43(12): 59‒70.
[25]
王文蕊. 高温和盐侵蚀环境下高韧性混凝土的性能演变和劣化机理 [D]. 杭州: 浙江大学(博士学位论文), 2022.
Wang W R. Performance evolution and deterioration mechanism of high toughness concrete under high temperature and salt erosion environment [D]. Hangzhou: Zhejiang University (Doctoral dissertation), 2022.
[26]
Hong Y X, Lin J, Chen W. Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method [J]. International Journal of Heat and Mass Transfer, 2019, 129: 449‒459.
[27]
Chéruel A, Ben Ftima M. Unrestrained ASR volumetric expansion for mass concrete structures: Review and experimental investigation using 3d laser scanning [J]. Construction and Building Materials, 2023, 399: 132565.
[28]
Wang L, Jin M M, Wu Y H, et al. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials [J]. Construction and Building Materials, 2021, 272: 121952.
[29]
Xie J, Wu Z M, Zhang X H, et al. Trends and developments in low-heat Portland cement and concrete: A review [J]. Construction and Building Materials, 2023, 392: 131535.
[30]
Wang L, Lu X, Liu L S, et al. Influence of MgO on the hydration and shrinkage behavior of low heat Portland cement-based materials via pore structural and fractal analysis [J]. Fractal and Fractional, 2022, 6(1): 40.
[31]
Li J H, Yu Z, Wu J, et al. The application of heat-shrinkable fibers and internal curing aggregates in the field of crack resistance of high-strength marine structural mass concrete: A review and prospects [J]. Polymers, 2023, 15(19): 3884.
[32]
Minunno R, O’Grady T, Morrison G M, et al. Exploring environmental benefits of reuse and recycle practices: A circular economy case study of a modular building [J]. Resources, Conservation and Recycling, 2020, 160: 104855.
[33]
肖建庄, 夏冰, 肖绪文. 工程结构可持续性设计理论架构 [J]. 土木工程学报, 2020, 53(6): 1‒12.
Xiao J Z, Xia B, Xiao X W. Theoretical framework for sustainability design of engineering structures [J]. China Civil Engineering Journal, 2020, 53(6): 1‒12.
[34]
广西壮族自治区人民政府. 抓重点攻难点创亮点 项目推进按下“加速键” [EB/OL]. (2023-06-08)[2024-06-20]. http://www.gxzf.gov.cn/html/gxyw/t16626596.shtml.
The People’s Government of Guangxi Zhuang Autonomous Region. Grasping the key points and attacking the difficulties to create a bright spot, project advancement pressed the “accelerator button” [EB/OL]. (2023-06-08)[2024-06-20]. http://www.gxzf.gov.cn/html/gxyw/t16626596.shtml.
[35]
傅强, 丁陶, 朱彤, 等. 竖向分布钢筋不连接装配整体式剪力墙平面外稳定性分析 [J]. 建筑结构, 2023, 53(5): 24‒29.
Fu Q, Ding T, Zhu T, et al. Out-of-plane stability analysis of monolithic assembled concrete shear wall with non-connected vertical distribution reinforcement [J]. Building Structure, 2023, 53(5): 24‒29.
[36]
亓立刚, 李厂, 包睿洁, 等. 竖向分布钢筋不连接装配整体式剪力墙结构体系一体化建造技术研究与应用 [J/OL]. 建筑结构, [2024-06-10]. https://doi.org/10.19701/j.jzjg.20221429.
Qi L G, Li C, Bao R J, et al. Research and application on integrated construction technology of monolithic assembled concrete shear wall structure with non-connected vertical distribution reinforcement [J/OL]. Building Structure, [2024-06-10]. https://doi.org/10.19701/j.jzjg.20221429.
[37]
宋晓滨, 蔡琪, 肖绪文, 等. 带窗洞的竖向分布钢筋不连接装配整体式剪力墙的受力性能分析 [J]. 建筑结构, 2023 (5): 30‒35.
Song X B, Cai Q, Xiao X W, et al. Study on the mechanical behavior of monolithic assembled concrete shear wall structure with non-connected vertical distribution reinforcement and window openings [J]. Building Structure, 2023 (5): 30‒35.
[38]
柏美岩, 肖建庄, 高琦, 等. 3D打印工程弃土挤出过程力学性能试验研究 [J]. 同济大学学报(自然科学版), 2022, 50(3): 389‒398.
Bai M Y, Xiao J Z, Gao Q, et al. Experimental study of mechanical properties of 3D printing bricks with construction spoil during extrusion [J]. Journal of Tongji University (Natural Science), 2022, 50(3): 389‒398.
[39]
肖建庄, 沈剑羽, 高琦, 等. 工程弃土现状与资源化创新技术 [J]. 建筑科学与工程学报, 2020, 37(4): 1‒13.
Xiao J Z, Shen J Y, Gao Q, et al. Current situation and innovative technology for recycling of engineering waste soil [J]. Journal of Architecture and Civil Engineering, 2020, 37(4): 1‒13.
[40]
沈剑羽, 肖建庄, 高琦, 等. 工程弃土复配及再生砖性能试验 [J]. 应用基础与工程科学学报, 2023, 31(4): 990‒1005.
Shen J Y, Xiao J Z, Gao Q, et al. Compound mixing and properties of recycled brick with construction spoil [J]. Journal of Basic Science and Engineering, 2023, 31(4): 990‒1005.
[41]
肖建庄, 沈剑羽, 段珍华, 等. 工程渣土资源化基础问题与低碳技术路径 [J]. 科学通报, 2023, 68(21): 2722‒2736.
Xiao J Z, Shen J Y, Duan Z H, et al. Basic problems and low-carbon technical path of construction spoil recycling [J]. Chinese Science Bulletin, 2023, 68(21): 2722‒2736.
[42]
Duan Z H, Hou S D, Xiao J Z, et al. Rheological properties of mortar containing recycled powders from construction and demolition wastes [J]. Construction and Building Materials, 2020, 237: 117622.
[43]
Tang Y X, Xiao J Z, Wang D C, et al. Effect of carbonation treatment on fracture behavior of low-carbon mortar with recycled sand and recycled powder [J]. Cement and Concrete Composites, 2023, 142: 105178.
[44]
Hu K, Chen Y J, Yu C H, et al. Upgrading the quality of recycled aggregates from construction and demolition waste by using a novel brick separation and surface treatment method [J]. Materials, 2020, 13(13): 2893.
[45]
Hu K, Chen Y J, Naz F, et al. Separation studies of concrete and brick from construction and demolition waste [J]. Waste Management, 2019, 85: 396‒404.
[46]
Xiao J Z, Lyu Z Y, Duan Z H, et al. Pore structure characteristics, modulation and its effect on concrete properties: A review [J]. Construction and Building Materials, 2023, 397: 132430.
[47]
赵增丰, 姚磊, 肖建庄, 等. 再生骨料CO2碳化强化技术研究进展 [J]. 硅酸盐学报, 2022, 50(8): 2296‒2304.
Zhao Z F, Yao L, Xiao J Z, et al. Development on accelerated carbonation technology to enhance recycled aggregates [J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2296‒2304.
[48]
Liang C F, Pan B H, Ma Z M, et al. Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: A review [J]. Cement and Concrete Composites, 2020, 105: 103446.
[49]
Shi C J, Li Y K, Zhang J K, et al. Performance enhancement of recycled concrete aggregate—A review [J]. Journal of Cleaner Production, 2016, 112: 466‒472.
[50]
王亚丽, 李依洋, 王玲玉, 等. 赤泥还原法提铁 – 脱碱尾渣制备水泥熟料 [J]. 硅酸盐通报, 2023, 42(12): 4378‒4388.
Wang Y L, Li Y Y, Wang L Y, et al. Preparation of cement clinker from red mud reduction iron recovery-dealkalization tailings [J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4378‒4388.
[51]
曹瑛, 李卫东, 刘艳改. 工业废渣赤泥的特性及回收利用现状 [J]. 硅酸盐通报, 2007, 26(1): 143‒145.
Cao Y, Li W D, Liu Y G. Properties of red mud and current situation of its utilization [J]. Bulletin of the Chinese Ceramic Society, 2007, 26(1): 143‒145.
[52]
Agrawal S, Dhawan N. Evaluation of red mud as a polymetallic source—A review [J]. Minerals Engineering, 2021, 171: 107084.
[53]
Wang S H, Jin H X, Deng Y, et al. Comprehensive utilization status of red mud in China: A critical review [J]. Journal of Cleaner Production, 2021, 289: 125136.
[54]
郝勇, 信翔宇, 黄永波, 等. 工业固废赤泥在水泥制备中的应用研究进展 [J]. 中国粉体技术, 2022, 28(2): 1‒6.
Hao Y, Xin X Y, Huang Y B, et al. Application of industrial solid waste red mud in cement preparation: A review [J]. China Powder Science and Technology, 2022, 28(2): 1‒6.
[55]
Yuan Y P, Yuan C Q, Xu H L, et al. Pathway for integrated development of waterway transportation and energy in China [J]. Chinese Journal of Engineering Science, 2022, 24(3): 184.
[56]
Jia L M, Shi R F, Ji L, et al. Road transportation and energy integration strategy in China [J]. Chinese Journal of Engineering Science, 2022, 24(3): 163.
[57]
Jia L M, Cheng P, Zhang Z, et al. Integrated development of rail transit and energies in China: Development paths and strategies [J]. Chinese Journal of Engineering Science, 2022, 24(3): 173.
[58]
何正友, 向悦萍, 廖凯, 等. 能源 – 交通 – 信息三网融合发展的需求、形态及关键技术 [J]. 电力系统自动化, 2021, 45(16): 73‒86.
He Z Y, Xiang Y P, Liao K, et al. Demand, form and key technologies of integrated development of energy‒transport‒information networks [J]. Automation of Electric Power Systems, 2021, 45(16): 73‒86.
Funding
Funding project: National Key R&D Program of China(2022YFC3803401); Chinese Academy of Engineering project “Research on Green Construction Development Strategy”(2022-XZ-21); Science and Technology Major Project of Guangxi (Guike(AA23062054); Guike AA23062022
AI Summary AI Mindmap
PDF(1402 KB)

Accesses

Citations

Detail

Sections
Recommended

/