
Development Strategy of Airborne Geophysical Exploration Technology
Shengqing Xiong, Jingwen Mao, Min Liu, Xihua Zhou, Xueyi Xu, Xuwen Qin, Liangquan Ge, Linfei Wang, Bin Chen, Tonglin Li, Yao Luo
Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (5) : 104-116.
Development Strategy of Airborne Geophysical Exploration Technology
Airborne geophysical exploration is an important and rapid method for mineral prospecting. China's airborne geophysical exploration technology has made great progress in the 21st century. However, existing technologies and equipment can hardly satisfy the new demand for key prospecting technologies and equipment for deep-Earth and deep-sea exploration in the new round of mineral prospecting breakthroughs in China. Focusing on the high-quality development of airborne geophysical exploration technologies in China, this study summarizes the development status of these technologies in China and abroad, evaluates the technological competition and development trends, and analyzes the major challenges faced by China in this field. Considering the new changes, characteristics, and trends of scientific and technological development, this study proposes a development roadmap of China's airborne geophysics exploration technologies, aiming at frontier technologies, such as superconducting sensors, full-tensor airborne-gravity gradient, full-tensor aeromagnetic gradient, multi-field-source full-depth airborne electromagnetism, and airborne seismic survey, as well as practical technologies urgently needed for the new round of mineral prospecting breakthroughs. Given the weaknesses in frontier research capability, technical adaptability, and innovation foundation, it is proposed to establish a national innovation center for airborne geophysical technologies, conduct the research and development of the fourth-generation airborne geophysical exploration technology, and build an integrated development system for airborne geophysical technical equipment.
airborne geophysics / mineral resource exploration / full-tensor airborne-gravity gradient survey / full-tensor aeromagnetic gradient survey / multi-field-source full-depth airborne electromagnetic survey / airborne seismic survey
[1] |
毛景文, 杨宗喜, 谢桂青, 等. 关键矿产——国际动向与思考 [J]. 矿床地质, 2019, 38(4): 689‒698.
Mao J W, Yang Z X, Xie G Q, et al. Critical minerals: International trends and thinking [J]. Mineral Deposits, 2019, 38(4): 689‒698.
|
[2] |
鞠建华, 张照志, 潘昭帅, 等. 我国战略性新兴产业矿产厘定与"十四五" 需求分析 [J]. 中国矿业, 2022, 31(9): 1‒11.
Ju J H, Zhang Z Z, Pan Z S, et al. Determination of mineral resources in China's strategic emerging industries and analysis of the demand of the "14th Five Year Plan" [J]. China Mining Magazine, 2022, 31(9): 1‒11.
|
[3] |
鞠建华, 王嫱, 陈甲斌. 新时代中国矿业高质量发展研究 [J]. 中国矿业, 2019, 28(1): 1‒7.
Ju J H, Wang Q, Chen J B. Study on the high quality development of China mining industry in the new era [J]. China Mining Magazine, 2019, 28(1): 1‒7.
|
[4] |
熊盛青. 发展中国航空物探技术有关问题的思考 [J]. 中国地质, 2009, 36(6): 1366‒1374.
Xiong S Q. The strategic consideration of the development of China's airborne geophysical technology [J]. Geology in China, 2009, 36(6): 1366‒1374.
|
[5] |
熊盛青, 周锡华, 薛典军, 等. 航空地球物理综合探测理论技术方法装备应用 [M]. 北京: 地质出版社, 2018.
Xiong S Q, Zhou X H, Xue D J, et al. Aero-geophysical integrated exploration theory, technology, method, equipment and application [M]. Beijing: Geological Publishing House, 2018.
|
[6] |
熊盛青. 航空地球物理勘查科技创新与应用 [J]. 地质力学学报, 2020, 26(5): 791‒818.
Xiong S Q. Innovation and application of airborne geophysical exploration technology [J]. Journal of Geomechanics, 2020, 26(5): 791‒818.
|
[7] |
熊盛青, 徐学义. 航空地球物理在战略性矿产勘查中的应用前景 [J]. 地球科学与环境学报, 2023, 45(2): 143‒156.
Xiong S Q, Xu X Y. Application prospect of aerogeophysics in strategic mineral exploration [J]. Journal of Earth Sciences and Environment, 2023, 45(2): 143‒156.
|
[8] |
《中国矿床发现史·物探化探》编委会. 中国矿床发现史: 物探化探卷 [M]. 北京: 地质出版社, 2002.
Editorial Committee of History of deposit discovery in China·geophysical and geochemical exploration. History of deposit discovery in China·volume of geophysical and geochemical exploration [M]. Beijing: Geological Publishing House, 2002.
|
[9] |
姚培慧. 中国铁矿志 [M]. 北京: 冶金工业出版社, 1993.
Yao P H. Iron ore records of China [M]. Beijing: Metallurgical Industry Press,1993.
|
[10] |
李怀渊, 江民忠, 陈国胜, 等. 我国航空放射性测量进展及发展方向 [J]. 物探与化探, 2018, 42(4): 645‒652.
Li H Y, Jiang M Z, Chen G S, et al. The brilliant achievements and technological innovation of airborne radioactivity survey in China [J]. Geophysical and Geochemical Exploration, 2018, 42(4): 645‒652.
|
[11] |
Paterson N R. Geophysical developments and mine discoveries in the 20th century [J]. The Leading Edge, 2003, 22(6): 558‒561.
|
[12] |
Witherly K. The evolution of minerals exploration over 60 years and the imperative to explore undercover [J]. The Leading Edge, 2012, 31(3): 292‒295.
|
[13] |
Witherly K. Building effective mineral system models; the importance of merging geophysical observation with geological inference [J]. ASEG Extended Abstracts, 2015 (1): 1‒4.
|
[14] |
Killeen P G. Mineral exploration trend and developments in 2014 [J]. The Northern Miner, 2015, 101(2): 1‒28.
|
[15] |
SNL Metals Economics Group. Worldwide exploration trends [R]. Toronto: SNL Financial, 2015.
|
[16] |
吴其斌, 马冰, 张桂平. 近年来国外勘查地球物理的若干进展与趋势 [J]. 物探与化探, 2015, 39(6): 1261‒1266.
Wu Q B, Ma B, Zhang G P. The trends and developments of mining geophysics in recent years abroad [J]. Geophysical and Geochemical Exploration, 2015, 39(6): 1261‒1266.
|
[17] |
林君, 嵇艳鞠, 赵静, 等. 量子地球物理深部探测技术及装备发展战略研究 [J]. 中国工程科学, 2022, 24(4): 156‒166.
Lin J, Ji Y J, Zhao J, et al. Development strategy of quantum-based deep geophysical exploration technology and equipment [J]. Strategic Study of CAE, 2022, 24(4): 156‒166.
|
[18] |
林君, 刁庶, 张洋, 等. 地球物理矢量场磁测技术的研究进展 [J]. 科学通报, 2017, 62(23): 2606‒2618.
Lin J, Diao S, Zhang Y, et al. Research progress of geophysical vector magnetic field survey technology [J]. Chinese Science Bulletin, 2017, 62(23): 2606‒2618.
|
[19] |
李莉, 鲁长国. 征途漫漫的航空物探梦——记国家重点领域航空地球物理与遥感地质科技创新团队 [J]. 中国科技奖励, 2017 (10): 66‒69.
Li L, Lu C G. The dream of aerogeophysical exploration with a long journey—A record of the innovation team of aerogeophysical and remote sensing geology in national key fields [J]. China Awards for Science and Technology, 2017 (10): 66‒69.
|
[20] |
高维, 舒晴, 屈进红, 等. 国外航空物探测量系统近年来若干进展 [J]. 物探与化探, 2016, 40(6): 1116‒1124.
Gao W, Shu Q, Qu J H, et al. New progress of aerogeophysical techniques abroad [J]. Geophysical and Geochemical Exploration, 2016, 40(6): 1116‒1124.
|
[21] |
张昌达. 重磁与时间域电磁法发展趋势研究 [M]. 武汉: 中国地质大学出版社, 2013.
Zhang C D. Research on the development trend of gravity and magnetism and time domain electromagnetic [M]. Wuhan: China University of Geosciences Press Co., Ltd., 2013.
|
[22] |
Thompson L G D. Airborne gravity meter test [J]. Journal of Geophysical Research, 1959, 64: 488.
|
[23] |
Nettleton L L, LaCoste L, Harrison J C. Tests of an airborne gravity meter [J]. Geophysics, 1960, 25(1): 181‒202.
|
[24] |
王静波, 熊盛青, 周锡华, 等. 航空重力测量系统研究进展 [J]. 物探与化探, 2009, 33(4): 368‒373.
Wang J B, Xiong S Q, Zhou X H, et al. The advances in the study of the airborne gravimetry system [J]. Geophysical and Geochemical Exploration, 2009, 33(4): 368‒373.
|
[25] |
张虹, 周能, 邓肖丹, 等. 国外航空重力测量与数据处理技术最新进展 [J]. 物探与化探, 2019, 43(5): 1015‒1022.
Zhang H, Zhou N, Deng X D, et al. The latest progress in air gravity measurement and data processing technology abroad [J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1015‒1022.
|
[26] |
王晨阳, 骆遥, 熊盛青, 等. 海域航空重力快速构建区域大地水准面 [J]. 地球物理学报, 2021, 64(3): 907‒915.
Wang C Y, Luo Y, Xiong S Q, et al. A fast approach for determining geoid using airborne gravity data of sea area [J]. Chinese Journal of Geophysics, 2021, 64(3): 907‒915.
|
[27] |
舒晴. 航空重力梯度测量技术研究 [D]. 长春: 吉林大学 (博士学位论文), 2018.
Shu Q. Research on airborne gravity gradient measurement technology [D]. Changchun: Jilin University (Doctoral dissertation), 2018.
|
[28] |
Stray B, Lamb A, Kaushik A, et al. Quantum sensing for gravity cartography [J]. Nature, 2022, 602(7898): 590‒594.
|
[29] |
Bonvalot S, Bresson A, Bidel Y, et al. Airborne absolute gravimetry using cold-atom interferometry: First experiment and comparisons with classical technologies [C]. San Francisco: AGU Fall Meeting Abstracts, 2019.
|
[30] |
He S X, Wu D W, Miao Q. The principle of cold atom interference and its application in navigation [C]. Tianjin: 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), 2020.
|
[31] |
Chen L Z, Wu P L, Zhu W H, et al. A novel strategy for improving the aeromagnetic compensation performance of helicopters [J]. Sensors, 2018, 18(6): 1846.
|
[32] |
Kirschvink J L, Isozaki Y, Shibuya H, et al. Challenging the sensitivity limits of Paleomagnetism: Magnetostratigraphy of weakly magnetized Guadalupian-Lopingian (Permian) limestone from Kyushu, Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 75‒89.
|
[33] |
Kim B, Lee S, Park G, et al. Development of an unmanned airship for magnetic exploration [J]. Exploration Geophysics, 2021, 52(4): 462‒467.
|
[34] |
Stolz R, Schmelz M, Zakosarenko V, et al. Superconducting sensors and methods in geophysical applications [J]. Superconductor Science and Technology, 2021, 34(3):1-10.
|
[35] |
郭华, 王明, 岳良广, 等. 吊舱式高温超导全张量磁梯度测量系统研发与应用研究 [J]. 地球物理学报, 2022, 65(1): 360‒370.
Guo H, Wang M, Yue L G, et al. Development and application of a full-tensor magnetic gradient measurement system for the cabin HTS [J]. Chinese Journal of Geophysics, 2022, 65(1): 360‒370.
|
[36] |
Schmidt P, Clark D, Leslie K, et al. GETMAG—A SQUID magnetic tensor gradiometer for mineral and oil exploration [J]. Exploration Geophysics, 2004, 35(4): 297‒305.
|
[37] |
王卫平, 王守坦, 周锡华, 等. 频率域航空电磁法及应用 [M]. 北京: 地质出版社, 2011.
Wang W P, Wang S T, Zhou X H, et al. Frequency domain airborne electromagnetic method and its application [M]. Beijing: Geology Publishing House, 2011.
|
[38] |
Siemon B, Christiansen A V, Auken E. A review of helicopter-borne electromagnetic methods for groundwater exploration [J]. Near Surface Geophysics, 2009, 7(5/6): 629‒646.
|
[39] |
殷长春, 张博, 刘云鹤, 等. 航空电磁勘查技术发展现状及展望 [J]. 地球物理学报, 2015, 58(8): 2637‒2653.
Yin C C, Zhang B, Liu Y H, et al. Review on airborne EM technology and developments [J]. Chinese Journal of Geophysics, 2015, 58(8): 2637‒2653.
|
[40] |
武欣, 薛国强, 方广有. 中国直升机航空瞬变电磁探测技术进展 [J]. 地球物理学进展, 2019, 34(4): 1679‒1686.
Wu X, Xue G Q, Fang G Y. Development of helicopter-borne transient electromagnetic in China [J]. Progress in Geophysics, 2019, 34(4): 1679‒1686.
|
[41] |
刘裕华, 顾仁康, 候振荣. 航空放射性测量 [J]. 物探与化探, 2002, 26(4): 250‒252.
Liu Y H, Gu R K, Hou Z R. Airborne radiometrics survey [J]. Geophysical and Geochemical Exploration, 2002, 26(4): 250‒252.
|
[42] |
万建华, 熊盛青, 范正国. 航空伽马能谱测量方法技术现状与展望 [J]. 物探与化探, 2012, 36(3): 386‒391.
Wan J H, Xiong S Q, Fan Z G. The status and prospects of airborne gamma-ray spectrometry technology and its application [J]. Geophysical and Geochemical Exploration, 2012, 36(3): 386‒391.
|
[43] |
葛良全, 熊盛青, 曾国强, 等. 航空伽马能谱探测技术与应用 [M]. 北京: 科学出版社, 2016.
Ge L Q, Xiong S Q, Zeng G Q, et al. Airborne gamma ray spectrum detection and application [M]. Beijing: Science Press, 2016.
|
[44] |
王林飞, 熊盛青, 何辉, 等. 非地震地球物理软件发展现状与趋势 [J]. 物探与化探, 2011, 35(6): 837‒844.
Wang L F, Xiong S Q, He H, et al. Current status and future trends of non-seismic geophysical software [J]. Geophysical and Geochemical Exploration, 2011, 35(6): 837‒844.
|
[45] |
刘浩军, 薛典军, 郭志宏, 等. 航空物探软件系统研制 [J]. 物探与化探, 2003, 27(2): 146‒149, 165.
Liu H J, Xue D J, Guo Z H, et al. The development of the aero geophysical software system [J]. Geophysical and Geochemical Exploration, 2003, 27(2): 146‒149, 165.
|
[46] |
陈靖, 王万银. 重磁处理及反演软件发展现状及未来趋势探讨 [J]. 地球物理学进展, 2017, 32(3): 1106‒1113.
Chen J, Wang W Y. Discussion on the development and future trends of gravity and magnetic softwares for data processing and inversion [J]. Progress in Geophysics, 2017, 32(3): 1106‒1113.
|
[47] |
熊盛青, 周锡华, 郭志宏, 等. 航空重力勘探理论方法及应用 [M]. 北京: 地质出版社, 2010.
Xiong S Q, Zhou X H, Guo Z H, et al. Airborne gravity prospecting theory, method and application [M]. Beijing: Geological Publishing House, 2010.
|
[48] |
中华人民共和国自然资源部. 航空重力测量技术规范: DZ/T 0381—2021 [S]. 北京: 地质出版社, 2021.
Ministry of Natural Resources of the People's Republic of China. Specification for airborne gravity survey: DZ/T 0381—2021 [S]. Beijing: Geological Publishing House, 2021.
|
[49] |
白金海, 马慧娟, 胡栋, 等. 冷原子重力仪研究进展综述 [J]. 宇航计测技术, 2023, 43(5): 1‒10.
Bai J H, Ma H J, Hu D, et al. Review of research advance on cold-atom gravimeter [J]. Journal of Astronautic Metrology and Measurement, 2023, 43(5): 1‒10.
|
[50] |
刘向东, 刘习凯, 马东, 等. 超导重力仪器: 机遇与挑战 [J]. 导航与控制, 2019, 18(3): 7‒13.
Liu X D, Liu X K, Ma D, et al. Superconducting gravity instrument: Opportunities and challenges [J]. Navigation and Control, 2019, 18(3): 7‒13.
|
[51] |
林君, 薛国强, 李貅. 半航空电磁探测方法技术创新思考 [J]. 地球物理学报, 2021, 64(9): 2995‒3004.
Lin J, Xue G Q, Li X. Technological innovation of semi-airborne electromagnetic detection method [J]. Chinese Journal of Geophysics, 2021, 64(9): 2995‒3004.
|
[52] |
嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用 [J]. 地球物理学报, 2013, 56(11): 3640‒3650.
Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship [J]. Chinese Journal of Geophysics, 2013, 56(11): 3640‒3650.
|
[53] |
杨寿南. 高分辨率阵列探测器航空伽马能谱仪研制 [D]. 成都: 成都理工大学(博士学位论文), 2020.
Yang S N. Development of airborne gamma spectrometer with high resolution array detector [D]. Chengdu: Chengdu University of Technology (Doctoral dissertation), 2020.
|
[54] |
孙和平. 对我国重力学未来发展的几点思考 [J]. 中国科学院院刊, 2024, 39(5): 881‒890.
Sun H P. Some reflections on developing trend of gravimetry in China [J]. Bulletin of Chinese Academy of Sciences, 2024, 39(5): 881‒890.
|
[55] |
郭建.一种航空地震勘探系统和方法: ZL202111106488.2 [P]. 2023-04-25.
Guo J. An airborne seismic exploration system and method:ZL202111106488.2 [P]. 2023-04-25.
|
[56] |
熊盛青, 钱荣毅, 马振宁. 航空震源冲击单元位置的确定方法及系统: CN114509795A [P]. 2022-05-17.
Xiong S Q, Qian R Y, Ma Z N. The method and system of determining the location of the shock unit of aviation source: CN114509795A [P]. 2022-05-17.
|
[57] |
马振宁, 王娇, 钱荣毅, 等. 一种无人机航空地震仪: CN202210491366.8 [P]. 2022-07-05.
Ma Z N, Wang J, Qian R Y, et al. An aerial seismometer for unmanned aerial vehicle: CN202210491366.8 [P]. 2022-07-05.
|
[58] |
吴志勇, 钱荣毅, 马振宁, 等. 地震探测无人机遥控震源实验研究 [J]. 科学技术与工程, 2022, 22(29): 12739‒12745.
Wu Z Y, Qian R Y, Ma Z N, et al. Experimental research on unmanned aerial vehicle remote control source of seismic exploration [J]. Science Technology and Engineering, 2022, 22(29): 12739‒12745.
|
/
〈 |
|
〉 |