
Innovative Development of Low-Carbon, Clean, and Intelligent Aluminum Metallurgy
Jie Li, Xiaowei Huang, Guihua Liu, Fengqin Liu, Jiaqi Li, Hongliang Zhao, Hongliang Zhang
Strategic Study of CAE ›› 2024, Vol. 26 ›› Issue (5) : 223-233.
Innovative Development of Low-Carbon, Clean, and Intelligent Aluminum Metallurgy
Aluminum is the most widely used non-ferrous metal. Promoting the low-carbon, clean, and intelligent development of the aluminum metallurgy is crucial for implementing the new development philosophy and cultivating new quality productive forces. This study delves into the historical background and projected trajectory of China's aluminum industry, shedding light on the ecological links and pivotal intricacies of aluminum smelting processes. Subsequently, the study conducts a thorough analysis of the technical status and prevailing challenges across three crucial domains: the energy-saving, low-carbon, and intelligent aluminum electrolysis; the low-carbon and clean production of alumina using aluminum-containing resources; and the safe disposal and recycling of hazardous solid wastes in aluminum industry. Based on a thorough assessment of resources, energy, and environmental factors, we establish fundamental principles for fostering the innovative development of a low-carbon, clean, and intelligent aluminum metallurgy. For each critical process, we outline an innovative development roadmap, highlight key technologies, and set ambitious development goals for 2035. To achieve these goals, the following measures are proposed: improving the national policy system, formulating a high-quality standards system, enhancing the industrial security system, accelerating the green and low-carbon technology transformation, and strengthening the nation through human resources.
aluminum metallurgy / aluminum electrolysis / alumina refining / low-carbon metallurgy / green metallurgy
[1] |
刘业翔, 李劼. 现代铝电解 [M]. 北京: 冶金工业出版社, 2008.
Liu Y X, Li J. Modern aluminum electrolysis [M]. Beijing: Metallurgical Industry Press, 2008.
|
[2] |
中国有色金属工业协会. 2023中国有色金属发展报告 [M]. 北京: 冶金工业出版社, 2023.
China Nonferrous Metals Industry Association. 2023 report on the development of nonferrous metals in China [M]. Beijing: Metallurgical Industry Press, 2023.
|
[3] |
朱逸慧. 十种有色金属产品产量首次突破7000万吨 [J]. 中国有色金属, 2024 (5): 18‒19.
Zhu Y H. The output of ten non-ferrous metal products exceeded 70 million tons for the first time [J]. China Nonferrous Metals, 2024 (5): 18‒19.
|
[4] |
刘祥民. 加快赤泥绿色利用的思考 [J]. 中国有色金属, 2024 (3): 30‒32.
Liu X M. Thoughts on speeding up the green utilization of red mud [J]. China Nonferrous Metals, 2024 (3): 30‒32.
|
[5] |
许国栋, 敖宏, 佘元冠. 我国原铝消费规律研究及消费量预测 [J]. 中国管理信息化, 2013, 16(11): 31‒35.
Xu G D, Ao H, She Y G. Study on the consumption law and consumption forecast of primary aluminum in China [J]. China Management Informationization, 2013, 16(11): 31‒35.
|
[6] |
杨毅, 郭尧琦, 朱文松, 等. 我国铝工业经济增长与碳排放脱钩的时空分异研究 [J]. 矿冶工程, 2018, 38(6): 168‒172.
Yang Y, Guo Y Q, Zhu W S, et al. Discussion of spatio-temporal differentiation for decoupling carbon emissions from economic growth in China's aluminum industry [J]. Mining and Metallurgical Engineering, 2018, 38(6): 168‒172.
|
[7] |
刘少丽. 中国铝资源可持续保障程度及对策研究 [D]. 成都: 成都理工大学(博士学位论文), 2018.
Liu S L. Study on the sustainable guarantee degree and countermeasures of aluminum resources in China [D]. Chengdu: Chengdu University of Technology (Doctoral dissertation), 2018.
|
[8] |
许国栋. 中国铝工业可持续发展问题研究 [M]. 北京: 冶金工业出版社, 2013.
Xu G D. Research on sustainable development of aluminum industry in China [M]. Beijing: Metallurgical Industry Press, 2013.
|
[9] |
Dai M, Wang P, Chen W Q, et al. Scenario analysis of China's aluminum cycle reveals the coming scrap age and the end of primary aluminum boom [J]. Journal of Cleaner Production, 2019, 226: 793‒804.
|
[10] |
Tan R B H, Khoo H H. An LCA study of a primary aluminum supply chain [J]. Journal of Cleaner Production, 2005, 13(6): 607‒618.
|
[11] |
Chen W Q, Shi L. Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China's aluminum production [J]. Resources, Conservation and Recycling, 2012, 65: 18‒28.
|
[12] |
陈伟强. 中国铝存量与流量分析: 环境影响、需求模拟及政策启示 [D]. 北京: 清华大学(博士学位论文), 2010.
Chen W Q. Stocks and flows analysis of aluminum in China: Environmental impacts, future demand modelling and policy implications [D]. Beijing: Tsinghua University (Doctoral dissertation), 2010.
|
[13] |
卢浩洁, 王婉君, 代敏, 等. 中国铝生命周期能耗与碳排放的情景分析及减排对策 [J]. 中国环境科学, 2021, 41(1): 451‒462.
Lu H J, Wang W J, Dai M, et al. Scenario analysis of energy consumption and carbon emissions in Chinese aluminum life cycle and emissions reduction measures [J]. China Environmental Science, 2021, 41(1): 451‒462.
|
[14] |
Yang Y, Guo Y Q, Zhu W S, et al. Environmental impact assessment of China's primary aluminum based on life cycle assessment [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1784‒1792.
|
[15] |
刘风琴, 邱定蕃, 顾松青, 等. 我国铝冶炼工业的竞争力分析及发展趋势 [J]. 工程科学学报, 2022, 44(4): 561‒572.
Liu F Q, Qiu D F, Gu S Q, et al. Analysis of competitiveness of China's aluminum industry in the world and its development trend [J]. Chinese Journal of Engineering, 2022, 44(4): 561‒572.
|
[16] |
柴立元, 王云燕, 孙竹梅, 等. 绿色冶金创新发展战略研究 [J]. 中国工程科学, 2022, 24(2): 10‒21.
Chai L Y, Wang Y Y, Sun Z M, et al. Innovative development strategy of green metallurgy [J]. Strategic Study of CAE, 2022, 24(2): 10‒21.
|
[17] |
International Aluminium Institute. Development of the aluminum industry and technology in China [EB/OL]. (2024-02-05)[2024-02-21].https://international-aluminium.org/resource/development-of-the-aluminum-industry-and-technology-in-china/.
|
[18] |
干勇, 尹伟伦, 王海舟, 等. 支撑高质量发展的标准体系战略研究 [J]. 中国工程科学, 2021, 23(3): 1‒7.
Gan Y, Yin W L, Wang H Z, et al. Standards system for supporting high-quality development [J]. Strategic Study of CAE, 2021, 23(3): 1‒7.
|
[19] |
Xue J Y, Liu G Y, Brown M T, et al. Trash or treasure? Prospects for full aluminum chain in China based on the recycling options [J]. Journal of Cleaner Production, 2018, 193: 217‒227.
|
[20] |
Eheliyagoda D, Li J H, Geng Y, et al. The role of China's aluminum recycling on sustainable resource and emission pathways [J]. Resources Policy, 2022, 76: 102552.
|
[21] |
International Aluminium Institute. Primary aluminium production and smelting energy intensity [EB/OL]. (2023-09-26)[2024-02-21].https://international-aluminium.org/statistics/primary-aluminium-production/.
|
[22] |
郭士伊, 刘文强, 赵卫东. 调整产业结构降低碳排放强度的国际比较及经验启示 [J]. 中国工程科学, 2021, 23(6): 22‒32.
Guo S Y, Liu W Q, Zhao W D. Adjusting industrial structure and reducing carbon emission intensity: International comparison and experience enlightenment [J]. Strategic Study of CAE, 2021, 23(6): 22‒32.
|
[23] |
Project Team of the Strategy and Pathway for Peaked Carbon Emissions and Carbon Neutrality. Analysis of a peaked carbon emission pathway in China toward carbon neutrality project team on the strategy and pathway for peaked carbon emissions and carbon neutrality comment [J]. Engineering, 2021, 7(12): 1673‒1677.
|
[24] |
He Y, Zhou K C, Zhang Y, et al. Recent progress of inert anodes for carbon-free aluminium electrolysis: A review and outlook [J]. Journal of Materials Chemistry A, 2021, 9(45): 25272‒25285.
|
[25] |
Yang S, Zou Z, Li J, et al. Online anode current signal in aluminum reduction cells: Measurements and prospects [J]. JOM, 2016, 68(2): 623‒634.
|
[26] |
Sun K N, Li J, Zhang H L, et al. Microscopic mechanism of perfluorocarbon gas formation in aluminum electrolysis process [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1705‒1717.
|
[27] |
Li J, Lv X J, Zhang H L, et al. Development of low-voltage energy-saving aluminum reduction technology [C]. Barry A. Light Metals. Berlin: Springer, 2013: 557‒559.
|
[28] |
Zhang Y L, Sun M X, Hong J L, et al. Environmental footprint of aluminum production in China [J]. Journal of Cleaner Production, 2016, 133: 1242‒1251.
|
[29] |
Gu S Q. The evolution of alumina production technology in China, new challenges and trends [C]. Hamburg: The 35th International ICSOBA Conference, 2017.
|
[30] |
Yao Z T, Xia M S, Sarker P K, et al. A review of the alumina recovery from coal fly ash, with a focus in China [J]. Fuel, 2014, 120: 74‒85.
|
[31] |
Li X K, Liu Y, Zhang T A. A comprehensive review of aluminium electrolysis and the waste generated by it [J]. Waste Management and Research, 2023, 41(10): 1498‒1511.
|
[32] |
唐煜晟, 杨万章, 陈本松, 等. 铝电解典型危废的清洁回收技术研究进展 [J]. 湿法冶金, 2023, 42(6): 551‒558.
Tang Y S, Yang W Z, Chen B S, et al. Research progress on clean recovery technologies for typical hazardous waste from aluminum electrolysis process [J]. Hydrometallurgy of China, 2023, 42(6): 551‒558.
|
[33] |
Jovičević-Klug M, Souza Filho I R, Springer H, et al. Green steel from red mud through climate-neutral hydrogen plasma reduction [J]. Nature, 2024, 625(7996): 703‒709.
|
[34] |
Shen A X, Zhang J H. Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review [J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113965.
|
[35] |
Saevarsdottir G, Padamata S K, Velasquez B N, et al. The way towards zero carbon emissions in aluminum electrolysis [M]. Cham: Springer Nature Switzerland, 2023: 637‒645.
|
/
〈 |
|
〉 |