Development of Data and Computing Convergent Network

Yunjie Liu, Shuo Wang, Tao Huang, Jiasen Wang

Strategic Study of CAE ›› 2025, Vol. 27 ›› Issue (1) : 1-13.

PDF(1565 KB)
PDF(1565 KB)
Strategic Study of CAE ›› 2025, Vol. 27 ›› Issue (1) : 1-13. DOI: 10.15302/J-SSCAE-2024.10.005

Development of Data and Computing Convergent Network

Author information +
History +

Abstract

The data and computing convergent network (DCCN) is an intelligent communication network infrastructure tailored for data space applications. It promotes data space construction, data elements circulation, and integration of computing power and data. It also provides technical support for economic growth related to data rights, data circulation, and data transactions. This study defines the DCCN, outlines the key functions of its data plane, control plane, and orchestration layer, reviews the macro development requirements of the DCCN, and discusses the current development status and international trends of DCCN technologies. It further studies key DCCN components and technologies, including end sides, internal networking of data centers, data center exits, communication among data centers, networking among computing centers, networking between data and computing centers, control layers, orchestration layers, and security systems. Moreover, the study introduces application scenarios and cases of DCCNs, including east‒west data-center interconnections, computing power networks in urban areas, industrial extranet interconnections, energy facility interconnections, and industry-scale large models. Research also covers the challenges of developing DCCNs, based on which, we propose the following suggestions for developing the DCCN: (1) establishing public specialized networks that support the high-quality development of industry-scale large models; (2) promoting the construction of DCCN-based scientific facilities, serving national scientific development; (3) using the DCCN to promote applications in data spaces; (4) carrying out large-scale collaboration among computing facilities to overcome the bottleneck of insufficient computing capability at a single point. The suggestions aim to provide references for the development of DCCN infrastructures.

Graphical abstract

Keywords

data and computing convergent network / data space / intelligent networking / computing power network / key technologies for data and computing convergence

Cite this article

Download citation ▾
Yunjie Liu, Shuo Wang, Tao Huang, Jiasen Wang. Development of Data and Computing Convergent Network. Strategic Study of CAE, 2025, 27(1): 1‒13 https://doi.org/10.15302/J-SSCAE-2024.10.005

References

[1]
于施洋, 程学旗, 郭明军, 等‍‍. 数据空间发展战略蓝皮书 [R]‍. 北京: "国家数据空间发展战略研究"项目组, 2024‍.
Yu S Y, Cheng X Q, Guo M J, et al‍. Development strategic bluebook of data space [R]‍. Beijing: "National Data Space Development Strategy Research" Project Team, 2024‍.
[2]
Reiberg A, Niebel C, Kraemer P‍. What is a data space? [R]‍. Munich: Gaia-X Hub Germany, 2022‍.
[3]
Gupta A, Savarese S, Ganguli S, et al‍. Embodied intelligence via learning and evolution [J]‍. Nature Communications, 2021, 12(1): 5721‍.
[4]
中国信息通信研究院‍. 数据要素白皮书(2023年) [R]‍. 北京: 中国信息通信研究院, 2023‍.
China academy of Information and Communications Technology‍. data elements white paper (2023) [R]‍. Beijing: China Academy of Information and Communications Technology, 2023‍.
[5]
ITU Telecommunication Standardization Sector‍. Computing power network—Framework and architecture: Recommendation ITU-T Y‍.2501—2021 [S]‍. Switzerland: ITU, 2021: 1‒9‍.
[6]
刘韵洁, 黄韬, 汪硕‍. 关于未来网络技术体系创新的思考 [J]‍. 中国科学院院刊, 2022, 37(1): 38‒45‍.
Liu Y J, Huang T, Wang S‍. Thoughts on innovation of future network architecture [J]‍. Bulletin of Chinese Academy of Sciences, 2022, 37(1): 38‒45‍.
[7]
Otto B‍. A federated infrastructure for European data spaces [J]‍. Communications of the ACM, 2022, 65(4): 44‒45‍.
[8]
工业互联网产业联盟, 中国信息通信研究院. 可信工业数据空间系统架构1‍.0 [R]‍. 北京: 工业互联网产业联盟, 2022‍.
Alliance of Industrial Internet, China Academy of Information and Communications Technology‍. Trusted industrial data space system architecture 1‍.0 [R]‍. Beijing: Alliance of Industrial Internet, 2022‍.
[9]
Crichigno J, Bou-Harb E, Ghani N‍. A comprehensive tutorial on science DMZ [J]‍. IEEE Communications Surveys & Tutorials, 2019, 21(2): 2041‒2078‍.
[10]
Finn N, Thubert P, Varga B, et al‍. Deterministic networking architecture: RFC 8655—2019 [S]‍. Wilmington: Internet Engineering Task Force (IETF), 2019: 1‒38‍.
[11]
Michel O, Bifulco R, Rétvári G, et al‍. The programmable data plane: Abstractions, architectures, algorithms, and applications [J]‍. ACM Computing Surveys, 2021, 54(4): 1‒36‍.
[12]
Kianpisheh S, Taleb T‍. A survey on in-network computing: Programmable data plane and technology specific applications [J]‍. IEEE Communications Surveys & Tutorials, 2023, 25(1): 701‒761‍.
[13]
汪庆, 李俊儒, 舒继武‍. 在网存储系统研究综述 [J]‍. 计算机研究与发展, 2023, 60(11): 2681‒2695‍.
Wang Q, Li J R, Shu J W‍. Survey on in-network storage systems [J]‍. Journal of Computer Research and Development, 2023, 60(11): 2681‒2695‍.
[14]
European Commission‍. European data strategy [EB/OL]‍. [2024-09-20]‍. https://commission‍.europa‍.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy_en‍.
[15]
Office of Management and Budget, the CDO Council, and the General Services Administration‍. Federal data strategy [EB/OL]‍. [2024-09-20]‍. https://strategy‍.data‍.gov/overview/‍.
[16]
European Association for Data and Cloud AISBL‍. Gaia-X [EB/OL]‍. [2024-09-20]‍. https://gaia-x‍.eu/wp-content/uploads/2024/01/Gaia-X-Brochure_2024_Online_Spread‍.pdf‍.
[17]
Powell B‍. Accelerating world changing research collaborations, 2022 annual report [R]‍. Washington DC: Office of Science of U‍.S‍. Department of Energy, 2023‍.
[18]
国家数据局. "数据要素×"三年行动计划(2024—2026年) [EB/OL]‍. (2024-01-04)[2024-09-20]‍. https://www‍.ndrc‍.gov‍.cn/hdjl/yjzq/202312/P020231215685140119139‍.pdf‍.
National Data Bureau. "Data Elements ×" three-year action plan (2024—2026) [EB/OL]‍. (2024-01-04)‍[2024-09-20]‍. https://www‍.ndrc‍.gov‍.cn/hdjl/yjzq/202312/P020231215685140119139‍.pdf‍.
[19]
中华人民共和国工业和信息化部‍. 关于推动未来产业创新发展的实施意见 [EB/OL]‍. (2024-01-31)[2024-09-01]‍. https://zwgk‍.mct‍.gov‍.cn/zfxxgkml/kjjy/202401/t20240131_951102‍.html‍.
Ministry of Industry and Information Technology of the People's Republic of China. Implementation opinions on promoting future industrial innovation and development [EB/OL]‍. (2024-01-31)[2024-09-01]‍. https://zwgk‍.mct‍.gov‍.cn/zfxxgkml/kjjy/202401/t20240131_951102‍.html‍.
[20]
NVIDIA‍. Networking for the era of AI: The network defines the data center [R]‍. Santa Clara: Nvidia, 2024‍.
[21]
Grun P‍. Introduction to InfiniBand for end users [R]‍. Beaverton: InfiniBand Trade Association, 2010‍.
[22]
Nvidia‍. NVIDIA Spectrum-X network platform architecture [R]‍. Santa Clara: Nvidia, 2023‍.
[23]
Wan Z R, Zhang J, Yu M X, et al‍. BiCC: Bilateral congestion control in cross-datacenter RDMA networks [C]‍. Vancouver: IEEE INFOCOM 2024—IEEE Conference on Computer Communications, 2024‍.
[24]
黄韬, 汪硕, 黄玉栋, 等‍. 确定性网络研究综述 [J]‍. 通信学报, 2019, 40(6): 160‒176‍.
Huang T, Wang S, Huang Y D, et al‍. Survey of the deterministic network [J]‍. Journal on Communications, 2019, 40(6): 160‒176‍.
[25]
Huang Y D, Xu M R, Zhang X Y, et al‍. AI-generated network design: A diffusion model-based learning approach [J]‍. IEEE Network, 2024, 38(3): 202‒209‍.
Funding
Chinese Academy of Engineering projects "Research on the Development Path and Technical System of National Data Space"(2024-XBZD-05); "Research on the Development Strategy of National Data Space"(2023-XBZD-16)
AI Summary AI Mindmap
PDF(1565 KB)

Accesses

Citations

Detail

Sections
Recommended

/