
Development and Application of Solar-Powered Aircraft Technology
Xianglei Liu, Xinmeng Yang, Ruixiong Hu, Yimin Xuan
Development and Application of Solar-Powered Aircraft Technology
Solar-powered aircraft has the advantages of prolonged high-altitude flight, operational flexibility, and zero carbon emissions, making it one of the emerging fields that the global aerospace industry prioritizes. This study investigates the current development status of solar-powered aircraft in China and abroad and summarizes the development trends of its key technologies, including advanced aerodynamic design, efficient and low-cost solar cells, high-energy-density batteries, and efficient and wide-operating-condition propulsion. Based on the energy balance and mass balance principles, this study establishes an overall performance simulation model for solar-powered aircraft, predicting the development trends of its mass, sustainable flight altitude, and load capacity. The primary development direction of solar-powered aircraft is long-endurance, high-altitude, solar-powered unmanned air vehicles, which has important application prospects in the fields of military reconnaissance, environmental monitoring, and communication relay. Based on the predictive results and key technology research, this study proposes the short-, medium-, and long-term development goals and key tasks of solar-powered aircraft. Furthermore, it proposes strategies and policy recommendations to promote the sustainable development of solar-powered aircraft from three different levels: overall idea, technological breakthroughs, and system construction.
solar-powered aircraft / green aviation / carbon neutrality / efficient solar cell / advanced aerodynamic design / energy storage battery with high energy density
[1] |
施喆闻. 从产业投资视角看航空公司碳中和路径 [J]. 民航管理, 2022 (1): 25‒31.
Shi Z W. Airlines' carbon neutrality path: From the perspective of industrial investment [J]. Civil Aviation Management, 2022 (1): 25‒31.
|
[2] |
韩博, 刘雅婷, 谭宏志, 等. 一次航班飞行全过程大气污染物排放特征 [J]. 环境科学学报, 2017, 37(12): 4492‒4502.
Han B, Liu Y T, Tan H Z, et al. Emission characterization of civil aviation aircraft during a whole flight [J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4492‒4502.
|
[3] |
Noll T E, Brown J M, Perez-Davis M E, et al. Investigation of the Helios prototype aircraft mishap volume I mishap report [R]. Washington DC: National Aeronautics and Space Administratio, 2004.
|
[4] |
Doyle S. The measure of persistent high altitude solar aircraft (PHASA 35) [J]. Engineering & Technology, 2020, 15(3): 92‒93.
|
[5] |
FlightGlobal. BAE details latest test success with high-flying PHASA-35 [EB/OL]. (2024-12-19)[2024-12-20]. https://www.flightglobal.com/defence/bae-details-latest-test-success-with-high-flying-phasa-35/161180.article.
|
[6] |
Böswald M, Vollan A, Govers Y, et al. Solar Impulse - Ground vibration testing and finite element model validation of a lightweight aircraft [R]. Paris: IFASD, 2011.
|
[7] |
Matyas T, Galin A, Suruntovich N. Solar Impulse-2 [R]. Minsk: BNTU, 2016.
|
[8] |
Dawson D. Solar Impulse 2: Pulse on the future [J]. Composites World, 2016, 71: 36‒53.
|
[9] |
耿肃竹. "墨子Ⅱ型" 无人机首飞成功 [J]. 创新世界周刊, 2019 (7): 58‒59.
Geng S Z. The first flight of Mozi Ⅱ UAV was successful [J]. Innovation World Weekly, 2019 (7): 58‒59.
|
[10] |
国家航天局. 航天科工飞云工程取得阶段性成果 [EB/OL]. (2019-03-15)[2024-12-20]. https://www.cnsa. gov.cn/n6758823/n6758838/c6805666/content.html.
China National Space Administration. Feiyun Engineering of China Aerospace Science and Industry Corporation Limited has achieved phased results [EB/OL]. (2019-03-15)[2024-12-20]. https://www.cnsa.gov.cn/n6758823/n67 58838/c6805666/content.html.
|
[11] |
国产大型太阳能无人机首飞成功 [J]. 中国环境监察, 2022 (9): 6.
The domestic large-scale solar drone made its first flight successfully [J]. China Environment Supervision, 2022 (9): 6.
|
[12] |
陶于金. 临近空间超长航时太阳能无人机发展及关键技术 [J]. 航空制造技术, 2016, 59(18): 26‒30.
Tao Y J. Development and key technology on near space long voyage solar unmanned aerial vehicle [J]. Aeronautical Manufacturing Technology, 2016, 59(18): 26‒30.
|
[13] |
Chen W S, Bernal L. Design and performance of low Reynolds number airfoils for solar-powered flight [R]. Reno: 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.
|
[14] |
李广佳, 王红波, 张凯, 等. 临近空间太阳能无人机增升减阻技术综述 [J]. 航空学报, 2024, 45(5): 193‒209.
Li G J, Wang H B, Zhang K, et al. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 193‒209.
|
[15] |
Vashishtha V, Kumar S, Ashok, et al. Solar power the future of aviation industry [J]. International Journal of Engineering Science and Technology, 2011, 3(3): 2051‒2058.
|
[16] |
马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述 [J]. 航空学报, 2020, 41(3): 34‒63.
Ma D L, Zhang L, Yang M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 34‒63.
|
[17] |
NREL. The best-research cell efficiencies chart [EB/OL]. (2024-10-11)[2024-12-20]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf.
|
[18] |
薛超, 姜明序, 高鹏, 等. 柔性砷化镓太阳电池 [J]. 电源技术, 2015, 39(7): 1554‒1557.
Xue C, Jiang M X, Gao P, et al. Thin film Ga as solar cells [J]. Chinese Journal of Power Sources, 2015, 39(7): 1554‒1557.
|
[19] |
Rühle S. Tabulated values of the Shockley-Queisser limit for single junction solar cells [J]. Solar Energy, 2016, 130: 139‒147.
|
[20] |
王爱丽, 汪舒蓉, 林红, 等. 钙钛矿太阳电池的研究进展与关键挑战 [J]. 硅酸盐学报, 2021, 49(7): 1306‒1322.
Wang A L, Wang S R, Lin H, et al. Recent advances and critical challenges of perovskite solar cells [J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1306‒1322.
|
[21] |
Hu Y Z, Niu T T, Liu Y H, et al. Flexible perovskite solar cells with high power-per-weight: Progress, application, and perspectives [J]. ACS Energy Letters, 2021, 6(8): 2917‒2943.
|
[22] |
Horowitz K, Remo T, Smith B, et al. A techno-economic analysis and cost reduction roadmap for Ⅲ-Ⅴ solar cells [R]. Golden: NREL, 2018.
|
[23] |
De Bastiani M, Larini V, Montecucco R, et al. The levelized cost of electricity from perovskite photovoltaics [J]. Energy & Environmental Science, 2023, 16(2): 421‒429.
|
[24] |
Albrecht S, Rech B. Perovskite solar cells: On top of commercial photovoltaics [J]. Nature Energy, 2017, 2: 16196.
|
[25] |
杨希祥, 侯中喜, 郭正. 高空长航时太阳能飞机研究进展与技术挑战 [J]. 国防科技大学学报, 2023, 45(6): 1‒9.
Yang X X, Hou Z X, Guo Z. Development status and technology challenges of high-altitude long-endurance solar-powered aircraft [J]. Journal of National University of Defense Technology, 2023, 45(6): 1‒9.
|
[26] |
Gao X Z, Hou Z X, Guo Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft [J]. Renewable and Sustainable Energy Reviews, 2015, 44: 96‒108.
|
[27] |
Cheng Q, Chen Z X, Li X Y, et al. Constructing a 700 Wh kg-1-level rechargeable lithium-sulfur pouch cell [J]. Journal of Energy Chemistry, 2023, 76: 181‒186.
|
[28] |
刘帅, 姚路, 章琴, 等. 高性能锂硫电池研究进展 [J]. 物理化学学报, 2017, 33(12): 2339‒2358.
Liu S, Yao L, Zhang Q, et al. Advances in high-performance lithium-sulfur batteries [J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2339‒2358.
|
[29] |
朱立宏, 孙国瑞, 呼文韬, 等. 太阳能无人机能源系统的关键技术与发展趋势 [J]. 航空学报, 2020, 41(3): 85‒96.
Zhu L H, Sun G R, Hu W T, et al. Key technology and development trend of energy system in solar powered unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 85‒96.
|
[30] |
陈吉清, 翁楚滨, 兰凤崇, 等. 政策影响下的动力电池产业发展现状与趋势 [J]. 科技管理研究, 2019, 39(9): 148‒157.
Chen J Q, Weng C B, Lan F C, et al. Development status and trend of power battery industry under the influence of policy [J]. Science and Technology Management Research, 2019, 39(9): 148‒157.
|
[31] |
Cao W Z, Zhang J N, Li H. Batteries with high theoretical energy densities [J]. Energy Storage Materials, 2020, 26: 46‒55.
|
[32] |
张新彤. 太阳能无人机用高效率高转矩密度永磁同步电机的研究 [D]. 哈尔滨: 哈尔滨工业大学(硕士学位论文), 2018.
Zhang X T. Research on high efficiency and high torque density permanent magnet synchronous motor of solar unmanned aerial vehicle [D]. Harbin: Harbin Institute of Technology(Master's thesis), 2018.
|
[33] |
暴杰, 许重斌, 赵慧超. 汽车电驱动新型轴向磁通电机技术综述 [J]. 汽车文摘, 2022 (5): 44‒48.
Bao J, Xu C B, Zhao H C. Overview of new axial flux motor technologies for automobile electric drive [J]. Automotive Digest, 2022 (5): 44‒48.
|
[34] |
Collozza A, Dolce J L. High-altitude, long-endurance airships for coastal surveillance [R]. Washington DC: NASA, 2005.
|
/
〈 |
|
〉 |