
Development of Artificial Intelligence Chips in China
Jiaqing Wu, Dapeng Ren
Strategic Study of CAE ›› 2025, Vol. 27 ›› Issue (1) : 133-141.
Development of Artificial Intelligence Chips in China
Artificial intelligence (AI) chips are the core hardware supporting the development of intelligent technologies and their technological advancements hold significant importance for national scientific innovation, industrial development, and economic growth. This study summarizes the global development trends of AI chips from three perspectives: cloud AI chips, edge AI chips, and neuromorphic chips. It analyzes the application demands of AI chips in China and reviews the current status and development trends of related industries and technologies from the aspects of chip design, manufacturing, and packaging and testing. Currently, AI chips manufactured in China have shortcomings in terms of performance, technologies, and supply chain, necessitating independent innovation and industrial collaboration. The development of these chips also encounters challenges such as high costs and long cycles, requiring stable financing channels and the accumulation of development experiences. Moreover, the AI chip sector in China suffers from a talent shortage, demanding improved training quality and better talent-retaining strategies. Accordingly, this study proposes development paths for China’s AI chip industry, including overcoming technical bottlenecks, accelerating industrialization, expanding internationalization, and implementing market support. Key measures include advancing technological innovation and major project development, fostering new chip architectures and open-source industry ecosystems, establishing technical standards, and promoting the integration of industry, education, and research. These efforts aim to drive the sustainable and high-quality development of China’s AI chip industry.
artificial intelligence chips / chip design / chip manufacturing / chip packaging and testing / industrialization
[1] |
尹首一, 郭珩, 魏少军. 人工智能芯片发展的现状及趋势 [J]. 科技导报, 2018, 36(17): 45‒51.
Yin S Y, Guo H, Wei S J. Present situation and future trend of artificial intelligence chips [J]. Science & Technology Review, 2018, 36(17): 45‒51.
|
[2] |
葛悦涛, 任彦. 2020年人工智能芯片技术发展综述 [J]. 无人系统技术, 2021, 4(2): 14‒19.
Ge Y T, Ren Y. Survey of artificial intelligence chip in 2020 [J]. Unmanned Systems Technology, 2021, 4(2): 14‒19.
|
[3] |
Li B Z, Gu J J, Jiang W Z. Artificial intelligence (AI) chip technology review [C]. Taiyuan: 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2019.
|
[4] |
韩栋, 周聖元, 支天, 等. 智能芯片的评述和展望 [J]. 计算机研究与发展, 2019, 56(1): 7‒22.
Han D, Zhou S Y, Zhi T, et al. A survey of artificial intelligence chip [J]. Journal of Computer Research and Development, 2019, 56(1): 7‒22.
|
[5] |
Chen Y T, Nazhamaiti M, Xu H, et al. All-analog photoelectronic chip for high-speed vision tasks [J]. Nature, 2023, 623(7985): 48‒57.
|
[6] |
张臣雄. AI芯片: 前沿技术与创新未来 [M]. 北京: 人民邮电出版社, 2021.
Zhang C X. AI chips: Cutting edge technology and the future of innovation [M]. Beijing: Posts & Telecom Press, 2021.
|
[7] |
任会芬, 刘兵军, 刘杰, 等. 美国国防数智领域人才队伍建设新动向与启示 [J]. 国防科技, 2024, 45(5): 22‒28, 91.
Ren H F, Liu B J, Liu J, et al. Cultivation of digital and intelligent defense talent team in the US: New trends and insights [J]. National Defense Technology, 2024, 45(5): 22‒28, 91.
|
[8] |
Krenn W, Wilson A, Suresh A, et al. The European Chips Act, the ISOLDE project, and open-source hardware [C]. Bahía Blanca: 2024 Argentine Conference on Electronics (CAE), 2024.
|
[9] |
Mourtzis D, Angelopoulos J, Panopoulos N. A literature review of the challenges and opportunities of the transition from industry 4.0 to society 5.0 [J]. Energies, 2022, 15(17): 6276.
|
[10] |
赵沁平. 虚拟现实综述 [J]. 中国科学: 信息科学, 2009, 39(1): 2‒46.
Zhao Q P. Overview of virtual reality [J]. Scientia Sinica Informationis, 2009, 39(1): 2‒46.
|
[11] |
石建勋, 徐玲. 加快形成新质生产力的重大战略意义及实现路径研究 [J]. 财经问题研究, 2024 (1): 3‒12.
Shi J X, Xu L. Major strategic significance and implementation path of accelerating the formation of new quality productivity [J]. Research on Financial and Economic Issues, 2024 (1): 3‒12.
|
[12] |
Leslie M. Can giant microchips become a big deal? [J]. Engineering, 2024, 36: 6‒8.
|
[13] |
促进新一代人工智能产业发展三年行动计划(2018—2020年) [EB/OL]. (2017-12-13)[2024-10-22]. https://www.ncsti.gov.cn/kjdt/ztbd/gjjcyfw/rengongzhineng/rengongzhinengzczc/202109/t20210927_45504.html.
Three year action plan for promoting the development of the new generation artificial intelligence industry (2018—2020) [EB/OL]. (2017-12-13)[2024-10-22]. https://www.ncsti.gov.cn/kjdt/ztbd/gjjcyfw/rengongzhineng/rengongzhinengzczc/202109/t20210927_45504.html.
|
[14] |
全球及中国人工智能芯片(AI芯片)行业发展前景展望与投资战略规划分析报告(2024) [R]. 深圳: 前瞻产业研究院, 2024.
Global and China AI chip industry development prospects outlook and investment strategy planning analysis report [R]. Shenzhen: Qianzhan Industrial Research Institute, 2024.
|
[15] |
詹剑锋. 论中国如何发展自主可控和开放的科技产业 [J]. 中国科学院院刊, 2019, 34(6): 657‒666.
Zhan J F. On how to develop independent, and open science and technology industries in China [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 657‒666.
|
[16] |
万朵, 胡谋法, 肖山竹, 等. 面向边缘智能计算的异构并行计算平台综述 [J]. 计算机工程与应用, 2023, 59(1): 15‒25.
Wan D, Hu M F, Xiao S Z, et al. Survey on heterogeneous parallel computing platform for edge intelligent computing [J]. Computer Engineering and Applications, 2023, 59(1): 15‒25.
|
[17] |
王晓云, 段晓东, 张昊, 等. 算力时代: 一场新的产业革命 [M]. 北京: 中信出版集团股份有限公司, 2023.
Wang X Y, Duan X D, Zhang H, et al. The Age of arithmetic: A new industrial revolution [M]. Beijing: CITIC Press Corporation, 2023.
|
[18] |
Fan L Z, Li H, Zhuo J J, et al. The human brainnetome atlas: A new brain atlas based on connectional architecture [J]. Cerebral Cortex, 2016, 26(8): 3508‒3526.
|
[19] |
Tirumala A, Wong R. NVIDIA Blackwell platform: Advancing generative AI and accelerated computing [C]. Stanford: 2024 IEEE Hot Chips 36 Symposium (HCS), 2024.
|
[20] |
Li A, Song S L, Chen J Y, et al. Evaluating modern GPU interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect [J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(1): 94‒110.
|
[21] |
Smith A, Chapman E, Patel C, et al. 11.1 AMD Instinct MI300 series modular chiplet package-HPC and AI accelerator for exa-class systems [C]. San Francisco: 2024 IEEE International Solid-State Circuits Conference (ISSCC), 2024.
|
[22] |
Li Y, Zhu J B, Fu Y, et al. Circular reconfigurable parallel processor for edge computing: Industrial product [C]. Buenos Aires: 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), 2024.
|
[23] |
Al-Ali F, Gamage T D, Nanayakkara H W, et al. Novel casestudy and benchmarking of AlexNet for edge AI: From CPU and GPU to FPGA [C]. London: 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2020.
|
[24] |
Mittal S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform [J]. Journal of Systems Architecture, 2019, 97: 428‒442.
|
[25] |
曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望 [J]. 计算机学报, 2016, 39(1): 212‒222.
Zeng Y, Liu C L, Tan T N. Retrospect and outlook of brain-inspired intelligence research [J]. Chinese Journal of Computers, 2016, 39(1): 212‒222.
|
[26] |
Akopyan F, Sawada J, Cassidy A, et al. TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(10): 1537‒1557.
|
[27] |
Davies M, Srinivasa N, Lin T H, et al. Loihi: A neuromorphic manycore processor with on-chip learning [J]. IEEE Micro, 2018, 38(1): 82‒99.
|
[28] |
Furber S B, Galluppi F, Temple S, et al. The SpiNNaker project [J]. Proceedings of the IEEE, 2014, 102(5): 652‒665.
|
[29] |
Pehle C, Billaudelle S, Cramer B, et al. The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity [J]. Frontiers in Neuroscience, 2022, 16: 795876.
|
[30] |
陶建华, 陈云霁. 类脑计算芯片与类脑智能机器人发展现状与思考 [J]. 中国科学院院刊, 2016, 31(7): 803‒811.
Tao J H, Chen Y J. Current status and consideration on brain-like computing chip and brain-like intelligent robot [J]. Bulletin of Chinese Academy of Sciences, 2016, 31(7): 803‒811.
|
[31] |
王雨辰, 胡华. 类脑计算新发展——“TrueNorth”神经元芯片 [J]. 计算机科学, 2016, 43(S1): 17‒20, 24.
Wang Y C, Hu H. New development of artificial cognitive computation: TrueNorth neuron chip [J]. Computer Science, 2016, 43(S1): 17‒20, 24.
|
[32] |
中商产业研究院. 2024—2029年中国人工智能芯片行业市场发展监测及投资潜力预测报告 [R]. 深圳: 中商产业研究院, 2023.
China Commerce Industry Research Institute. 2024—2029 China AI chip industry market development monitoring and investment potential forecast report [R]. Shenzhen: China Commerce Industry Research Institute, 2023.
|
[33] |
魏少军. 提升芯片产品竞争力 [J]. 中国集成电路, 2023, 32(12): 9‒14, 35.
Wei S J. Enhance the competitiveness of chip products [J]. China Integrated Circuit, 2023, 32(12): 9‒14, 35.
|
[34] |
鲁蔚征, 张峰, 贺寅烜, 等. 华为昇腾神经网络加速器性能评测与优化 [J]. 计算机学报, 2022, 45(8): 1618‒1637.
Lu W Z, Zhang F, He Y X, et al. Evaluation and optimization for Huawei ascend neural network accelerator [J]. Chinese Journal of Computers, 2022, 45(8): 1618‒1637.
|
[35] |
Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture [J]. Nature, 2019, 572(7767): 106‒111.
|
[36] |
尹西明, 张贝贝, 陈泰伦, 等. 我国集成电路现代化产业体系构建的战略与路径思考 [J]. 中国科学院院刊, 2024, 39(7): 1191‒1204.
Yin X M, Zhang B B, Chen T L, et al. Insights on strategy and approach for China to construct a modern integrated circuits industrial system [J]. Bulletin of Chinese Academy of Sciences, 2024, 39(7): 1191‒1204.
|
[37] |
Xu Z H, Zhou T K, Ma M Z, et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence [J]. Science, 2024, 384(6692): 202‒209.
|
[38] |
Yang Z Y, Wang T Y, Lin Y H, et al. A vision chip with complementary pathways for open-world sensing [J]. Nature, 2024, 629(8014): 1027‒1033.
|
[39] |
智研咨询. 中国半导体先进封装行业市场全景评估及投资前景研判报告 [R]. 北京: 智研咨询, 2024.
Intelligence Research Group. China’s semiconductor advanced packaging industry market panoramic assessment and investment prospect research report [R]. Beijing: Intelligence Research Group, 2024.
|
[40] |
黎明, 黄如. 后摩尔时代大规模集成电路器件与集成技术 [J]. 中国科学: 信息科学, 2018, 48(8): 963‒977.
Li M, Huang R. Device and integration technologies for VLSI in post-Moore era [J]. Scientia Sinica Informationis, 2018, 48(8): 963‒977.
|
[41] |
刘军, 高爽, 汪曾达, 等. 射频异构集成微系统多层级协同仿真建模与PDK技术综述 [J]. 微电子学与计算机, 2024, 41(1): 11‒25.
Liu J, Gao S, Wang Z D, et al. A review of RF heterogeneous integrated microsystems multi-level cosimulation modeling and PDK technology [J]. Microelectronics & Computer, 2024, 41(1): 11‒25.
|
/
〈 |
|
〉 |