
Development of Hydrogen-Based Aviation Power in China
Jun Cao, Wei Li, Zhengyan Guo, Fujun Sun, Yao Kang, Qi Zeng, Mingdong Zhao, Zeyong Yin
Strategic Study of CAE ›› 2025, Vol. 27 ›› Issue (2) : 39-48.
Development of Hydrogen-Based Aviation Power in China
As an ideal fuel for achieving net-zero carbon emissions and sustainable development in the aviation industry, the hydrogen fuel will bring disruptive technological changes and industrial restructuring to the industry, and developing hydrogen-based aviation power is an important measure to achieving the carbon peaking and carbon neutralization goals for the aviation industry. This study first summarizes the utilization forms of hydrogen-based aviation power through literature research, and concludes that the hydrogen fuel is applicable to aviation power considering the safety of hydrogen as well as the high-altitude performance, fuel consumption rate, and pollutant emissions of hydrogen aviation powerplants. Subsequently, the current development status of hydrogen-based aviation power in major countries and aircraft/engine manufacturers worldwide is reviewed. The practical engineering values of hydrogen-based aviation power are explored from the perspectives of environmental protection, performance improvement, quick-start in high-altitude and high-cold regions, and hypersonic flight. Moreover, the study presents the technical challenges faced by hydrogen-based aviation power development in terms of integrated aircraft–engine design, onboard storage of liquid hydrogen, precise hydrogen metering and control, thermal management, and stable low-emission combustion. Finally, it proposes the development goals of hydrogen-based aviation power toward 2028, 2035, and 2050, and provides development priorities and implementation paths from four aspects: standards system, hydrogen infrastructure in airports, key application technologies, and talent cultivation. Furthermore, the following recommendations are proposed: (1) strengthening the overall coordination by establishing a hydrogen aviation development alliance; (2) establishing and improving the standards system to promote the safe and efficient development of hydrogen aviation engines; and (3) developing key technologies and accelerating the construction of hydrogen-based aviation power platforms for civil use.
net-zero carbon emission / hydrogen fuel / aviation power / hydrogen gas turbine / hydrogen fuel cell / integrated aircraft–engine design
[1] |
于占福. 航空产业碳中和之路全方位解析 [EB/OL]. (2021-08-24)[2024-02-18]. https://www.ccaonline.cn/yunshu/yshot/667761.html.
Yu Z F. Comprehensive analysis of carbon neutrality in the aviation industry [EB/OL]. (2021-08-24)[2024-02-18]. https://www.ccaonline.cn/yunshu/yshot/667761.html.
|
[2] |
许绩辉, 王克. 中国民航业中长期碳排放预测与技术减排潜力分析 [J]. 中国环境科学, 2022, 42(7): 3412‒3424.
Xu J H, Wang K. Medium-and long-term carbon emission forecast and technological emission reduction potential analysis of China's civil aviation industry [J]. China Environmental Science, 2022, 42(7): 3412‒3424.
|
[3] |
Monvoisih M. Carbon offsetting and reduction scheme for international aviation (CORSIA) [R]. Montreal: International Civil Aviation Organization, 2018.
|
[4] |
International Air Transport Association. Resolution on the industry's commitment to reach net zero carbon emissions by 2050 [R]. Montreal: International Air Transport Association, 2021.
|
[5] |
新华网. 习近平在第七十五届联合国大会一般性辩论上的讲话 [EB/OL]. (2020-09-22)[2025-02-10]. https://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527652.htm.
Xinhua News. Statement by H. E. Xi Jinping President of the People's Republic of China at the general debate of the 75th session of the United Nations General Assembly [EB/OL]. (2020-09-22)[2025-02-10]. https://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527652.htm.
|
[6] |
赵钦新, 王宗一, 邓世丰, 等. 氢气燃烧技术及其进展 [J]. 科学技术与工程, 2022, 22(36): 15870‒15880.
Zhao Q X, Wang Z Y, Deng S F, et al. Hydrogen combustion technology and progress [J]. Science Technology and Engineering, 2022, 22(36): 15870‒15880.
|
[7] |
吉力强. 氢能航空——航空领域的颠覆性技术变革新发展、新机遇、新挑战 [R]. 北京: 中国工程科技知识中心, 2023.
Ji L Q. Hydrogen powered aviation — New development, new opportunities and new challenges of disruptive technological changes in the aviation industry [R]. Beijing: China Knowledge Centre for Engineering Sciences and Technology, 2023.
|
[8] |
Trudell J. Dual hydrogen-jet fuel aircraft—A path to low carbon emis⁃sions [R]. Honolulu: 25th Joint Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC/ICMC), 2023.
|
[9] |
Aviation Week. ROLLS-ROYCE [EB/OL]. (2023-09-26)[2024-02-21]. https://aviationweek.com/aerospace/rolls-royce-61.
|
[10] |
Cecere D, Giacomazzi E, Ingenito A. A review on hydrogen industrial aerospace applications [J]. International Journal of Hydrogen Energy, 2014, 39(20): 10731‒10747.
|
[11] |
张扬军, 彭杰, 钱煜平, 等. 氢能航空的关键技术与挑战 [J]. 航空动力, 2021 (1): 20‒23.
Zhang Y J, Peng J, Qian Y P, et al. Key technologies and challenges of hydrogen powered aviation [J]. Aerospace Power, 2021 (1): 20‒23.
|
[12] |
侯绪凯, 赵田田, 孙荣峰, 等. 中国氢燃料电池技术发展及应用现状研究 [J]. 当代化工研究, 2022 (17): 112‒117.
Hou X K, Zhao T T, Sun R F, et al. Research on the development and application status of hydrogen fuel cell technology in China [J]. Modern Chemical Research, 2022 (17): 112‒117.
|
[13] |
李成杰, 刘禾, 郭发福, 等. 航空燃料电池燃气涡轮混合动力系统研究进展 [J]. 航空动力, 2024 (2): 17‒20.
Li C J, Liu H, Guo F F, et al. Development of aviation fuel cell gas turbine hybrid power system [J]. Aerospace Power, 2024 (2): 17‒20.
|
[14] |
Aviation Week. ZeroAvia flies prototype for hydrogen-electric regional aircraft [EB/OL]. (2023-01-19)[2025-02-12]. https://aviationweek.com/air-transport /aircraft-propulsion/zeroavia-flies-prototype-hydrogen-electric-regional-aircraft.
|
[15] |
韩玉琪. 2023年航空氢动力进展 [J]. 航空动力, 2024 (1): 38‒42.
Han Y Q. Progress of hydrogen powered aviation in 2023 [J]. Aerospace Power, 2024 (1): 38‒42.
|
[16] |
Bruce S, Temminghoff M, Hayward J, et al. Opportunities for hydrogen in commercial aviation [R]. Canberra: Commonwealth Scientific and Industrial Research Organization, 2020.
|
[17] |
Duvelleroy M, Benquet L, Stolzke H, et al. Airbus and CFM international to pioneer hydrogen combustion technology [EB/OL]. (2022-02-22)[2025-02-10]. https://www.airbus.com/en/newsroom/press-releases/2022-02-airbus-and-cfm-international-to-pioneer-hydrogen-combustion.
|
[18] |
Graham W. ZeroAvia flies prototype hydrogen- electric regional powerplant [EB/OL]. (2022-02-22)[2025-02-10]. https://aviationweek.com/aerospace/emerging-technologies/zeroavia-flies-prototype-hydrogen-electric-regional-powerplant.
|
[19] |
Graham W. ZeroAvia's 228 completes initial hydrogen-electric flight campaign [EB/OL]. (2023-07-19)[2025-02-10]. https://aviationweek.com/air-transport/aircraft-propulsion/zeroavias-228-completes-initial-hydrogen-electric-flight-campaign.
|
[20] |
Norris G. UH2 hydrogen-electric dash 8 flight tests move to phase 2 [EB/OL]. (2023-10-12)[2025-02-10]. https://aviationweek.com/aerospace/aircraft-propulsion/uh2-hydrogen-electric-dash-8-flight-tests-progress-phase-2.
|
[21] |
韩玉琪, 王则皓, 付玉. 欧盟清洁航空计划分析 [J]. 航空动力, 2023 (2): 28‒30.
Han Y Q, Wang Z H, Fu Y. Analysis of European union's clean aviation program [J]. Aerospace Power, 2023 (2): 28‒30.
|
[22] |
韩玉琪. 欧盟清洁氢能联合行动推进氢能航空技术创新 [J]. 航空动力, 2023 (5): 28‒30.
Han Y Q. European union's CHJU innovates H2-powered aviation technologies [J]. Aerospace Power, 2023 (5): 28‒30.
|
[23] |
何萍, 王翔宇. 赛峰和GE启动可持续发动机革新技术演示验证计划 [J]. 航空动力, 2021 (4): 40‒43.
He P, Wang X Y. Safran and GE aviation launch RISE program [J]. Aerospace Power, 2021 (4): 40‒43.
|
[24] |
Graham W. Daher preparing to fly ecopulse on hybrid-electric power [EB/OL]. (2023-06-22)[2025-02-10]. https://aviationweek.com/shownews/paris-air-show/daher-preparing-fly-ecopulse-hybrid-electric-power.
|
[25] |
Thierry D. Safran tests hydrogen combustion system components [EB/OL]. (2023-07-03)[2025-02-10]. https://aviationweek.com/aerospace/emerging-technologies/safran-tests-hydrogen-combustion-system-components.
|
[26] |
李明, 刘金超. 英国零碳飞行氢动力技术发展路线图 [J]. 航空动力, 2022 (3): 28‒32.
Li M, Liu J C. Analysis to hydrogen gas turbine roadmap and thrust generation of FlyZero [J]. Aerospace Power, 2022 (3): 28‒32.
|
[27] |
韩玉琪, 刘英杰. 欧盟清洁航空联合行动中的氢动力飞机分析 [J]. 航空动力, 2023 (6): 27‒29.
Han Y Q, Liu Y J. Hydrogen powered aircraft projects in European union's CAJU [J]. Aerospace Power, 2023 (6): 27‒29.
|
[28] |
Norris G. Rolls-Royce AE2100 run marks hydrogen power milestone [EB/OL]. (2022-11-28)[2025-02-10]. https://aviationweek.com/air-transport/rolls-royce-ae2100-run-marks-hydrogen-power-milestone.
|
[29] |
工业和信息化部, 科学技术部, 财政部, 等. 绿色航空制造业发展纲要(2023—2035) [EB/OL]. (2023-10-10)[2025-02-10]. https://www.gov.cn/zhengce/zhengceku/202310/content_6908243.htm.
Ministry of Industry and Information Technology of the People's Republic of China, Ministry of Science and Technology of the People's Republic of China, Ministry of Finance of the People's Republic of China, et al. Outline for the development of green aviation manufacturing industry (2023—2035) [EB/OL]. (2023-10-10)[2025-02-10]. https://www.gov.cn/zhengce/zhengceku/202310/content_6908243.htm.
|
[30] |
Tacina R. Combustor technology for future aircraft [R]. Orlando: 26th Joint Propulsion Conference, 1990.
|
[31] |
Goldmeer J, York W, Glaser P. Fuel and combustion system capabilities of GE's F and HA class gas turbines [R]. Charlotte: ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017.
|
[32] |
Boggia S, Jackson A. Some unconventional aero gas turbines using hydrogen fuel [R]. Amsterdam: ASME Turbo Expo 2002: Power for Land, Sea, and Air, 2002.
|
[33] |
Ponater M, Marquart S, Ström L, et al. On the potential of the cryoplane technology to reduce aircraft climate impact [R]. Friedrichshafen: the AAC-conference, 2003.
|
[34] |
Cecere D, Giacomazzi E, Ingenito A. A review on hydrogen industrial aerospace applications [J]. International Journal of Hydrogen Energy, 2014, 39(20): 10731‒10747.
|
[35] |
Winter C J. Hydrogen in high-speed air transportation [J]. International Journal of Hydrogen Energy, 1990, 15(8): 579‒595.
|
[36] |
向巧, 胡晓煜, 王曼, 等. 关于氢能航空动力发展的认识与思考 [J]. 航空发动机, 2024, 50(1): 1‒9.
Xiang Q, Hu X Y, Wang M, et al. Observations on the development of hydrogen-powered aircraft propulsion system [J]. Aeroengine, 2024, 50(1): 1‒9.
|
[37] |
梁义强, 范宇, 周建军, 等. 高超声速动力能热管理技术综述 [J]. 航空发动机, 2024, 50(2): 11‒21.
Liang Y Q, Fan Y, Zhou J J, et al. Overview of power and thermal management technology for hypersonic engine [J]. Aeroengine, 2024, 50(2): 11‒21.
|
[38] |
金如山, 索建秦. 先进燃气轮机燃烧室 [M]. 北京: 航空工业出版社, 2016.
Jin R S, Suo J Q. Advanced gas turbine combustor [M]. Beijing: Aviation Industry Press, 2016.
|
[39] |
华清, 严成忠. 液氢在高超声速航空发动机上的应用 [J]. 航空发动机, 2000, 26(2): 10‒13.
Hua Q, Yan C Z. Application of liquid hydrogen in hypersonic aeroengine [J]. Aeroengine, 2000, 26(2): 10‒13.
|
[40] |
莫妲, 林宇震, 韩啸, 等. 氢气微混燃烧技术研究现状和未来展望 [J]. 航空学报, 2024, 45(7): 028994.
Mo D, Lin Y Z, Han X, et al. Research progress and future prospect of hydrogen micromix combustion technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 028994.
|
[41] |
李维, 曹俊, 肖为. 氢燃料发动机技术及发展趋势 [J]. 航空动力, 2022 (2): 39‒42.
Li W, Cao J, Xiao W. Technology and development trend of hydrogen gas turbine [J]. Aerospace Power, 2022 (2): 39‒42.
|
[42] |
Lin R H, Xi X N, Wang P N, et al. Review on hydrogen fuel cell condition monitoring and prediction methods [J]. International Journal of Hydrogen Energy, 2019, 44(11): 5488‒5498.
|
[43] |
李明, 陈健. 英国零碳飞行氢涡轮发动机热管理技术 [J]. 航空动力, 2022 (4): 29‒32.
Li M, Chen J. Analysis to hydrogen gas turbine thermal management technology of FlyZero [J]. Aerospace Power, 2022 (4): 29‒32.
|
[44] |
徐伟强, 李倩倩, 李万青. 无人机机载低温液氢储罐结构设计与强度分析 [J]. 真空科学与技术学报, 2015, 35(8): 1017‒1022.
Xu W Q, Li Q Q, Li W Q. Simulation of mechanical strength of novel cryogenic liquid hydrogen tank for unmanned aerial vehicle [J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(8): 1017‒1022.
|
/
〈 |
|
〉 |