Systematic Governance of Atmospheric Environmental Issues in China

Run Liu, Min Shao, Keding Lu, Qihua Li, Qingru Wu, Gang Yan, Fahe Chai, Shuxiao Wang, Hang Su, Chuchu Chen, Shihan Zhang, Kebin He, Wenqing Liu, Yuanhang Zhang

Strategic Study of CAE ›› 2025

PDF(828 KB)
PDF(828 KB)
Strategic Study of CAE ›› 2025 DOI: 10.15302/J-SSCAE-2024.11.006

Systematic Governance of Atmospheric Environmental Issues in China

Author information +
History +

Abstract

In recent years, China has demonstrated significant green development, with remarkable achievements in air pollution control evidenced by the sustained decline in annual average fine particulate matter (PM2.5) concentration and continuous reduction of heavy pollution days. However, the structural and essential stress on air quality improvement remains prominent, as manifested by the increasing proportion of secondary components in PM2.5 and the high-level fluctuations of ozone concentration, indicating that severe challenges remain in atmospheric environment governance in China and highlighting the urgent need to address multiple pressures, including multi-objective synergy, multi-pollutant collaborative control, and compliance with international environmental conventions. This study analyzes the current status of atmospheric environment governance in China, identifying prominent challenges including insufficient theoretical innovation in systematic atmospheric environment governance, urgent needs to harness the potential of synergistic effects from carbon-pollution co-governance, and the requirement for formulating multi-scale-integrated air-quality management strategies. Furthermore, it elucidates the intrinsic relationships among atmospheric environmental issues, particularly the interactions between regional and global atmospheric problems as well as the cross-sphere mechanisms of multi-pollutant, multi-media processes. A critical framework of systematic atmospheric environment governance is proposed, comprising fundamental theories and applications of atmospheric oxidation capacity, along with innovative technological chains of systematic environmental management. Strategic recommendations are outlined, including implementing top-level design for systematic governance, initiating scientific innovation programs for holistic pollution control, establishing coordinated management mechanisms, and deploying action plans. These measures aim to advance systematic air-quality management in China and enhance health risk prevention and ecological risk control capabilities in atmospheric environment governance.

Graphical abstract

Keywords

atmospheric environment / systematic governance / atmospheric oxidation capacity / climate change / cross-sphere multi-media processes / international environmental conventions

Cite this article

Download citation ▾
Run Liu, Min Shao, Keding Lu, Qihua Li, Qingru Wu, Gang Yan, Fahe Chai, Shuxiao Wang, Hang Su, Chuchu Chen, Shihan Zhang, Kebin He, Wenqing Liu, Yuanhang Zhang. Systematic Governance of Atmospheric Environmental Issues in China. Strategic Study of CAE, 2025 https://doi.org/10.15302/J-SSCAE-2024.11.006

References

[1]
中华人民共和国生态环境保护部‍‍. 2023年中国生态环境状况公报 [R]‍. 北京: 中华人民共和国生态环境保护部, 2024‍.
Ministry of Ecology and Environment of the People's Republic of China‍. 2023 China ecological environment condition bulletin [R]‍. Beijing: Ministry of Ecology and Environment of the People's Republic of China, 2024‍.
[2]
耿冠楠, 肖清扬, 郑逸璇, 等‍. 实施《大气污染防治行动计划》对中国东部地区PM2‍.5化学成分的影响 [J]‍. 中国科学: 地球科学, 2020, 50(4): 469‒482‍.
Geng G N, Xiao Q Y, Zheng Y X, et al‍. Impact of China's air pollution prevention and control action plan on PM2‍.5 chemical composition over Eastern China [J]‍. Scientia Sinica Terrae, 2020, 50(4): 469‒482‍.
[3]
Zhao B, Wang S X, Hao J M‍. Challenges and perspectives of air pollution control in China [J]‍. Frontiers of Environmental Science & Engineering, 2024, 18(6): 68‍.
[4]
Zheng H, Kong S F, Seo J, et al‍. Achievements and challenges in improving air quality in China: Analysis of the long-term trends from 2014 to 2022 [J]‍. Environment International, 2024, 183: 108361‍.
[5]
Chen Q, Miao R Q, Geng G N, et al‍. Widespread 2013—2020 decreases and reduction challenges of organic aerosol in China [J]‍. Nature Communications, 2024, 15: 4465‍.
[6]
Kong L W, Song M D, Li X, et al‍. Analysis of China's PM2‍.5 and ozone coordinated control strategy based on the observation data from 2015 to 2020 [J]‍. Journal of Environmental Sciences, 2024, 138: 385‒394‍.
[7]
柴发合‍. 我国大气污染治理历程回顾与展望 [J]‍. 环境与可持续发展, 2020, 45(3): 5‒15‍.
Chai F H‍. Review and prospect on the atmospheric pollution control in China [J]‍. Environment and Sustainable Development, 2020, 45(3): 5‒15‍.
[8]
薛文博, 许艳玲, 史旭荣, 等‍. 我国大气环境管理历程与展望 [J]‍. 中国环境管理, 2021, 13(5): 52‒60‍.
Xue W B, Xu Y L, Shi X R, et al‍. Atmospheric environment management in China: Progress and outlook [J]‍. Chinese Journal of Environmental Management, 2021, 13(5): 52‒60‍.
[9]
刘伟, 郑逸璇, 冯悦怡, 等‍. 基于《全球空气质量指导值(2021)》的中国环境空气质量评价与启示 [J]‍. 中国环境管理, 2023, 15(2): 140‒148‍.
Liu W, Zheng Y X, Feng Y Y, et al‍. Evaluation and enlightenment of air quality status in China based on WHO global air quality guidelines (2021) [J]‍. Chinese Journal of Environmental Management, 2023, 15(2): 140‒148‍.
[10]
中国环境科学学会臭氧污染控制专业委员会‍. 中国大气臭氧污染防治蓝皮书(2023年) [M]‍. 北京: 科学出版社, 2024‍.
Ozone Pollution Control Professional Committee of the Chinese Society for Environmental Sciences‍. Blue book on the prevention and control of atmospheric ozone pollution in China (2023) [M]‍. Beijing: Science Press, 2024‍.
[11]
严刚, 薛文博, 雷宇, 等‍. 我国臭氧污染形势分析及防控对策建议 [J]‍. 环境保护, 2020, 48(15): 15‒19‍.
Yan G, Xue W B, Lei Y, et al‍. Situation and control measures of ozone pollution in China [J]‍. Environmental Protection, 2020, 48(15): 15‒19‍.
[12]
中国履行《关于消耗臭氧层物质的蒙特利尔议定书》三十年成效显著 [EB/OL]‍. (2022-12-05)[ 2025-02-15]‍. https://www‍.mee‍.gov‍.cn/xxgk/hjyw/202212/t20221205_1006940‍.shtml‍.
China's three decades of implementing the Montreal protocol on substances that deplete the ozone layer yield notable achievements [EB/OL]‍. (2022-12-05)[2025-02-15]‍. https://www‍.mee‍.gov‍.cn/xxgk/hjyw/202212/t20221205_1006940‍.shtml‍.
[13]
International Energy Agency‍. CO2 emissions in 2023 [EB/OL]‍. (2024-03-15)‍[2025-02-15]‍. https://www‍.iea‍.org/reports/co2-emissions-in-2023‍.
[14]
Global Mercury Partnership‍. Technical background report for the global mercury assessment 2013 [EB/OL]‍. [2025-02-15]‍. https://www‍.unep‍.org/globalmercurypartnership/resources/report/technical-background-report-global-mercury-assessment-2013‍.
[15]
Zhang L, Wang S X, Wang L, et al‍. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China [J]‍. Environmental Science & Technology, 2015, 49(5): 3185‒3194‍.
[16]
Wu J, Ding S, Fang X K, et al‍. Banks, emissions, and environmental impacts of China's ozone depletion substances and hydrofluorocarbon substitutes during 1980—2020 [J]‍. Science of The Total Environment, 2023, 882: 163586‍.
[17]
Lei R R, Xu Z C, Xing Y, et al‍. Global status of dioxin emission and China's role in reducing the emission [J]‍. Journal of Hazardous Materials, 2021, 418: 126265‍.
[18]
Naik V, Delire C, Wuebbles D J‍. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2 [J]‍. Journal of Geophysical Research: Atmospheres, 2004, 109(D6): D06301‍.
[19]
Stavrakou T, Müller J F, Bauwens M, et al‍. Isoprene emissions over Asia 1979—2012: Impact of climate and land-use changes [J]‍. Atmospheric Chemistry and Physics, 2014, 14(9): 4587‒4605‍.
[20]
Schnell J L, Prather M J, Josse B, et al‍. Effect of climate change on surface ozone over North America, Europe, and East Asia [J]‍. Geophysical Research Letters, 2016, 43(7): 3509‒3518‍.
[21]
Lelieveld J, Hadjinicolaou P, Kostopoulou E, et al‍. Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century [J]‍. Regional Environmental Change, 2014, 14(5): 1937‒1949‍.
[22]
Porter W C, Heald C L, Cooley D, et al‍. Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression [J]‍. Atmospheric Chemistry and Physics, 2015, 15(18): 10349‒10366‍.
[23]
Hou P, Wu S L‍. Long-term changes in extreme air pollution meteorology and the implications for air quality [J]‍. Scientific Reports, 2016, 6: 23792‍.
[24]
Schnell J L, Prather M J‍. Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(11): 2854‒2859‍.
[25]
Sun W X, Hess P, Liu C J‍. The impact of meteorological persistence on the distribution and extremes of ozone [J]‍. Geophysical Research Letters, 2017, 44(3): 1545‒1553‍.
[26]
Meul S, Langematz U, Kröger P, et al‍. Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery [J]‍. Atmospheric Chemistry and Physics, 2018, 18(10): 7721‒7738‍.
[27]
Zanis P, Akritidis D, Turnock S, et al‍. Climate change penalty and benefit on surface ozone: A global perspective based on CMIP6 earth system models [J]‍. Environmental Research Letters, 2022, 17(2): 1‒10‍.
[28]
Hong C P, Zhang Q, Zhang Y, et al‍. Impacts of climate change on future air quality and human health in China [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17193‒17200‍.
[29]
Wang Y X, Shen L L, Wu S L, et al‍. Sensitivity of surface ozone over China to 2000—2050 global changes of climate and emissions [J]‍. Atmospheric Environment, 2013, 75: 374‒382‍.
[30]
Westervelt D M, Ma C T, He M Z, et al‍. Mid-21st century ozone air quality and health burden in China under emissions scenarios and climate change [J]‍. Environmental Research Letters, 2019, 14(7): 074030‍.
[31]
Zhang X Y, Zhong J T, Wang J Z, et al‍. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming [J]‍. Atmospheric Chemistry and Physics, 2018, 18(8): 5991‒5999‍.
[32]
Cai W J, Li K, Liao H, et al‍. Weather conditions conducive to Beijing severe haze more frequent under climate change [J]‍. Nature Climate Change, 2017, 7(4): 257‒262‍.
[33]
Zou Y F, Wang Y H, Zhang Y Z, et al‍. Arctic sea ice, Eurasia snow, and extreme winter haze in China [J]‍. Science Advances, 2017, 3(3): e1602751‍.
[34]
Di Virgilio G, Evans J P, Blake S A P, et al‍. Climate change increases the potential for extreme wildfires [J]‍. Geophysical Research Letters, 2019, 46(14): 8517‒8526‍.
[35]
Shao M, Tang X Y, Zhang Y H, et al‍. City clusters in China: Air and surface water pollution [J]‍. Frontiers in Ecology and the Environment, 2006, 4(7): 353‒361‍.
[36]
赵曼仪, 王科‍. 减污降碳协同效应综合评估的研究综述与展望 [J]‍. 中国人口·资源与环境, 2024, 34(2): 58‒69‍.
Zhao M Y, Wang K‍. Comprehensive evaluations of the synergistic effects of carbon emission reduction and air pollution control: A literature review [J]‍. China Population, Resources and Environment, 2024, 34(2): 58‒69‍.
[37]
Gao J Y, Yang Y, Wang H L, et al‍. Climate responses in China to domestic and foreign aerosol changes due to clean air actions during 2013—2019 [J]‍. npj Climate and Atmospheric Science, 2023, 6: 160‍.
[38]
Wang P Y, Yang Y, Xue D K, et al‍. Aerosols overtake greenhouse gases causing a warmer climate and more weather extremes toward carbon neutrality [J]‍. Nature Communications, 2023, 14(1): 7257‍.
[39]
Gao J, He B, Chen B W, et al‍. Can mercury influence carbon dioxide levels? Implications for the implementation of the Minamata convention on mercury [J]‍. Environmental Science & Technology, 2024, 58(14): 6077‒6082‍.
[40]
Li S Y, Wang S X, Wu Q R, et al‍. Integrated benefits of synergistically reducing air pollutants and carbon dioxide in China [J]‍. Environmental Science & Technology, 2024, 58(32): 14193‒14202‍.
[41]
Wang Y H, Gao W K, Wang S, et al‍. Contrasting trends of PM2‍.5 and surface-ozone concentrations in China from 2013 to 2017 [J]‍. National Science Review, 2020, 7(8): 1331‒1339‍.
[42]
Li K, Jacob D J, Liao H, et al‍. A two-pollutant strategy for improving ozone and particulate air quality in China [J]‍. Nature Geoscience, 2019, 12(11): 906‒910‍.
[43]
孙金金, 谢晓栋, 秦墨梅, 等‍. 不同时间尺度上PM2‍.5与臭氧协同关系及其影响因素分析 [J]‍. 科学通报, 2022, 67(18): 2018‒2028‍.
Sun J J, Xie X D, Qin M M, et al‍. Analysis of coordinated relationship between PM2‍.5 and ozone and its affecting factors on different timescales [J]‍. Chinese Science Bulletin, 2022, 67(18): 2018‒2028‍.
[44]
Chen W H, Guenther A B, Jia S G, et al‍. Synergistic effects of biogenic volatile organic compounds and soil nitric oxide emissions on summertime ozone formation in China [J]‍. Science of The Total Environment, 2022, 828: 154218‍.
[45]
Prinn R G‍. The cleansing capacity of the atmosphere [J]‍. Annual Review of Environment and Resources, 2003, 28(1): 29‒57‍.
[46]
Lu K D, Guo S, Tan Z F, et al‍. Exploring atmospheric free-radical chemistry in China: The self-cleansing capacity and the formation of secondary air pollution [J]‍. National Science Review, 2019, 6(3): 579‒594‍.
[47]
Yang X P, Li Y, Ma X F, et al‍. Unclassical radical generation mechanisms in the troposphere: A review [J]‍. Environmental Science & Technology, 2024, 58(36): 15888‒15909‍.
[48]
Gulev S K, Thorne P W, Ahn J, et al‍. Changing State of the Climate System [EB/OL]‍. [2025-02-15]‍. https://www‍.ipcc‍.ch/report/ar6/wg1/chapter/chapter-2/‍.
Funding
Funding project: National Key R&D Program of China(2023YFC3706100┫?); Chinese Academy of Engineering project "Research on the Strategy of Coordinated Response to Air Quality and Global Change in China"(2023-XZ-78)
AI Summary AI Mindmap
PDF(828 KB)

Accesses

Citations

Detail

Sections
Recommended

/