
Typical Geological Hazard Chain in Coastal Areas: Progress and Prospects
Xingjie Guo, Hanmei Wang, Longxi Zhan
Typical Geological Hazard Chain in Coastal Areas: Progress and Prospects
Coastal areas are rich in resources, economically developed, and densely populated. Affected by climate changes and human activities, regional geological disasters are prone to occur and are widely distributed, especially chain disasters triggered by the continuous evolution of individual disasters, posing a great threat to coastal stability and safety of coastal cities. This study analyzes the current status of typical geological hazards such as coastal erosion, shallow gas activities, and offshore submarine landslides in coastal areas worldwide, and sorts out their concepts, distribution, failure mechanisms, and prevention measures. Additionally, it summarizes the major monitoring techniques, theoretical methods, physical models, and numerical simulation methods for geological hazard research, and explores their applicable conditions and development bottlenecks. It is found that coastal erosion, shallow gas activities, and offshore submarine landslides mostly occur in the same area, and have correlations in terms of source and causal chains; that is, continuous coastal erosion can cause shallow gas leakage or directly lead to submarine landslides, and large amount of shallow gas leakage in geological layers can also trigger submarine landslides. To prevent and control the geological hazard chain in coastal areas, this study proposes a development strategy for future geological hazard monitoring and early warning, suggesting to build a space-air-Earth-sea multi-dimension integrated monitoring system, carry out mechanism analysis of big data and numerical simulation, and improve the early warning and forecasting of disaster chains with artificial intelligence, so as to provide a reference for urban safety and geological hazard source control in coastal areas.
coastal areas / geology / disaster chain / destruction mechanism / integrated monitoring / artificial intelligence
[1] |
Visbeck M. Ocean science research is key for a sustainable future [J]. Nature Communications, 2018, 9(1): 690.
|
[2] |
李国胜. 《浙江省海岸带土地资源开发与综合管理研究》评述 [J]. 地理学报, 2015, 70(4): 512.
Li G S. Review on study on development and comprehensive management of coastal land resources in Zhejiang Province [J]. Acta Geographica Sinica, 2015, 70(4): 512.
|
[3] |
吕剑, 骆永明, 章海波. 中国海岸带污染问题与防治措施 [J]. 中国科学院院刊, 2016, 31(10): 1175‒1181.
Lyu J, Luo Y M, Zhang H B. Coastal zone pollution and its prevention and treatment measures in China [J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1175‒1181.
|
[4] |
万祥益, 荆万里, 李理. 海岸带安全韧性空间设计策略研究 [J]. 海洋开发与管理, 2024, 41(9): 48‒58.
Wan X Y, Jing W L, Li L. Research on safety resilient space design strategies in coastal zone [J]. Ocean Development and Management, 2024, 41(9): 48‒58.
|
[5] |
Mizrahi S. Cascading disasters, information cascades and continuous time models of domino effects [J]. International Journal of Disaster Risk Reduction, 2020, 49: 101672.
|
[6] |
Pescaroli G, Alexander D. Critical infrastructure, panarchies and the vulnerability paths of cascading disasters [J]. Natural Hazards, 2016, 82(1): 175‒192.
|
[7] |
Bird E C F. Coastline changes: A global review [M]. Chichester: John Wiley and Sons, 1985.
|
[8] |
Mentaschi L, Vousdoukas M I, Pekel J F, et al. Global long-term observations of coastal erosion and accretion [J]. Scientific Reports, 2018, 8(1): 12876.
|
[9] |
Chen Y F, Deng B, Zhang G L, et al. Response of shallow gas-charged holocene deposits in the Yangtze Delta to meter-scale erosion induced by diminished sediment supply: Increasing greenhouse gas emissions [J]. Journal of Geophysical Research: Earth Surface, 2023, 128(1): e2022JF006631.
|
[10] |
Locat J, Lee H J. Submarine landslides: Advances and challenges [J]. Canadian Geotechnical Journal, 2002, 39(1): 193‒212.
|
[11] |
Xu Y S, Wu H N, Shen J S, et al. Risk and impacts on the environment of free-phase biogas in Quaternary deposits along the coastal region of Shanghai [J]. Ocean Engineering, 2017, 137: 129‒137.
|
[12] |
Duan X Y, Yin P, Tsona N, et al. Biogenic methane in coastal unconsolidated sediment systems: A review [J]. Environmental Research, 2023, 227: 115803.
|
[13] |
Dan G, Sultan N, Savoye B. The 1979 Nice harbour catastrophe revisited: Trigger mechanism inferred from geotechnical measurements and numerical modelling [J]. Marine Geology, 2007, 245(1‒4): 40‒64.
|
[14] |
Vanneste M, Madshus C, Socco V L, et al. On the use of the Norwegian Geotechnical Institute’s prototype seabed-coupled shear wave vibrator for shallow soil characterization-I. Acquisition and processing of multimodal surface waves [J]. Geophysical Journal International, 2011, 185(1): 221‒236.
|
[15] |
王传珺, 吴英超, 马恭博, 等. 海岸侵蚀灾害损失评估方法研究 [J]. 海洋环境科学, 2019, 38(1): 106‒110, 119.
Wang C J, Wu Y C, Ma G B, et al. Research on assessment method of coastal erosion disaster loss [J]. Marine Environmental Science, 2019, 38(1): 106‒110, 119.
|
[16] |
李平, 丰爱平, 孙惠凤, 等. 海岸侵蚀灾害调查和评价研究进展与展望 [J]. 自然灾害学报, 2021, 30(4): 55‒63.
Li P, Feng A P, Sun H F, et al. Research progress and prospect of coastal erosion investigation and evaluation [J]. Journal of Natural Disasters, 2021, 30(4): 55‒63.
|
[17] |
许国辉, 刘海波, 陶威, 等. 应对气候变化的侵蚀海岸管理与防护技术探讨 [J]. 海岸工程, 2022, 41(4): 428‒440.
Xu G H, Liu H B, Tao W, et al. Discussion on management and protection techniques for coastal erosion in response to climate change [J]. Coastal Engineering, 2022, 41(4): 428‒440.
|
[18] |
Vousdoukas M I, Ranasinghe R, Mentaschi L, et al. Sandy coastlines under threat of erosion [J]. Nature Climate Change, 2020, 10(3): 260‒263.
|
[19] |
林峰竹, 王慧, 张建立, 等. 中国沿海海岸侵蚀与海平面上升探析 [J]. 海洋开发与管理, 2015, 32(6): 16‒21.
Lin F Z, Wang H, Zhang J L, et al. Analysis of coastal erosion and sea level rise in China [J]. Ocean Development and Management, 2015, 32(6): 16‒21.
|
[20] |
Shadrick J R, Rood D H, Hurst M D, et al. Sea-level rise will likely accelerate rock coast cliff retreat rates [J]. Nature Communications, 2022, 13(1): 7005.
|
[21] |
Zhu Q G, Xing F, Wang Y P, et al. Hidden delta degradation due to fluvial sediment decline and intensified marine storms [J]. Science Advances, 2024, 10(18): eadk1698.
|
[22] |
You Z J, Laine R, Wiecek D, et al. Field measurements of beach‒dune dynamic profiles and grain size distributions to assess coastal erosion along NSW coast of Australia [R].Seoul: 2014 International Conference on Coastal Engineering, 2014.
|
[23] |
Nielsen D M, Pieper P, Barkhordarian A, et al. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century [J]. Nature Climate Change, 2022, 12(3): 263‒270.
|
[24] |
Spiske M, Pilarczyk J E, Mitchell S, et al. Coastal erosion and sediment reworking caused by hurricane Irma-implications for storm impact on low-lying tropical islands [J]. Earth Surface Processes and Landforms, 2022, 47(4): 891‒907.
|
[25] |
Rodríguez E, Ávila G, Guerra-Chanis G. Coastline changes in the Pacific of Panama due to coastal erosion [R]. Panama: 2022 8th International Engineering, Sciences and Technology Conference (IESTEC), 2022.
|
[26] |
Oliveira E C, Barboza R D, Silva B G G, et al. Erosion of four Brazilian coastal deltas: How dam construction is changing the natural pattern of coastal sedimentary systems [J]. Anais da Academia Brasileira de Ciências, 2023, 95(s1): e20220576.
|
[27] |
陈吉余. 中国海岸侵蚀概要 [M]. 北京: 海洋出版社, 2010.
Chen J Y. Overview of coastal erosion in China [M]. Beijing: Ocean Publishing House, 2010.
|
[28] |
Cai F, Su X Z, Liu J H, et al. Coastal erosion in China under the condition of global climate change and measures for its prevention [J]. Progress in Natural Science, 2009, 19(4): 415‒426.
|
[29] |
吉学宽, 林振良, 闫有喜, 等. 海岸侵蚀、防护与修复研究综述 [J]. 广西科学, 2019, 26(6): 604‒613.
Ji X K, Lin Z L, Yan Y X, et al. Review on the research of coastal erosion, protection and restoration [J]. Guangxi Sciences, 2019, 26(6): 604‒613.
|
[30] |
Bruun P. Sea-level rise as a cause of shore erosion [J]. Journal of the Waterways and Harbors Division, 1962, 88(1): 117‒130.
|
[31] |
Barrie J V, Conway K W. Rapid sea-level change and coastal evolution on the Pacific margin of Canada [J]. Sedimentary Geology, 2002, 150(1‒2): 171‒183.
|
[32] |
van Rijn L C. Coastal erosion and control [J]. Ocean & Coastal Management, 2011, 54(12): 867‒887.
|
[33] |
Pethick J. Coastal management and sea-level rise [J]. Catena, 2001, 42(2‒4): 307‒322.
|
[34] |
Sallenger Jr A H. Storm impact scale for barrier islands [J]. Journal of Coastal Research, 2000, 16(3): 890‒895.
|
[35] |
Palmsten M L, Holman R A. Laboratory investigation of dune erosion using stereo video [J]. Coastal Engineering, 2012, 60: 123‒135.
|
[36] |
Lajoie K, Mathieson S. 1982-83 ElNiño coastal erosion, San Mateo County, California [R]. Menlo Park: Science for a Changing World, 1998.
|
[37] |
Hampton M A, Dingler J R. Short‒term evolution of three coastal cliffs in San Mateo County, California [J]. Shore & Beach, 1998, 66: 24‒30.
|
[38] |
Duperret A, Genter A, Mortimore R, et al. Coastal rock cliff erosion by collapse at puys, France: The role of impervious marl seams within chalk of NW Europe [J]. Journal of Coastal Research, 2002, 18(1): 52‒61.
|
[39] |
Young A P, Flick R E, Gutierrez R, et al. Comparison of short-term seacliff retreat measurement methods in Del Mar, California [J]. Geomorphology, 2009, 112(3‒4): 318‒323.
|
[40] |
哈长伟. 江苏淤泥质海岸侵蚀与沉积特征研究 [D]. 上海: 华东师范大学(硕士学位论文), 2009.
Ha C W. Study on erosion and deposition characteristics of muddy coast in Jiangsu Province [D]. Shanghai: East China Normal University (Master’s thesis), 2009.
|
[41] |
Ravens T M, Thomas R C, Roberts K A, et al. Causes of salt marsh erosion in Galveston Bay, Texas [J]. Journal of Coastal Research, 2009, 252: 265‒272.
|
[42] |
Allen J R L. Morpho dynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe [J]. Quaternary Science Reviews, 2000, 19(12): 1155‒1231.
|
[43] |
van der Wal D, Pye K. Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK) [J]. Geomorphology, 2004, 61(3‒4): 373‒391.
|
[44] |
Schwimmer R A. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, U.S.A [J]. Journal of Coastal Research, 2001, 17(3): 672‒683.
|
[45] |
Uda T. Beach erosion arising from artificial land modification [J]. Journal of Disaster Research, 2007, 2(1): 29‒36.
|
[46] |
Bray M J, Hooke J M. Prediction of soft-cliff retreat with accelerating sea-level rise [J]. Journal of Coastal Research, 1997, 13(2): 453‒467.
|
[47] |
Bruun P. The Bruun rule of erosion by sea‒level rise: A discussion on large-scale two-and three-dimensional usages [J]. Journal of coastal Research, 1988, 4(4): 627‒648.
|
[48] |
van de Graaff J. Dune erosion during a storm surge [J]. Coastal Engineering, 1977, 1: 99‒134.
|
[49] |
Raudkivi A J, Dette H H. Reduction of sand demand for shore protection [J]. Coastal Engineering, 2002, 45(3‒4): 239‒259.
|
[50] |
Mimura N, Shimizu T, Horikawa K. Laboratory study on the influence of detached breakwater on coastal change [J]. Coastal structures, 1983: 740‒752.
|
[51] |
Sakashita T, Sato S, Tajima Y. Alongshore extension of beach erosion around a large-scale structure [R]. Miami: The Coastal Sediments 2011, 2011.
|
[52] |
范航清, 何斌源, 王欣, 等. 生态海堤理念与实践 [J]. 广西科学, 2017, 24(5): 427‒434, 440.
Fan H Q, He B Y, Wang X, et al. The conception and practices of ecological sea dyke [J]. Guangxi Sciences, 2017, 24(5): 427‒434, 440.
|
[53] |
林俊翔. 绿色生态海堤施工技术探讨 [J]. 低碳世界, 2017, 7(1): 159‒160.
Lin J X. Discussion on construction technology of green ecological seawall [J]. Low Carbon World, 2017, 7(1): 159‒160.
|
[54] |
李广雪, 宫立新, 杨继超, 等. 山东滨海沙滩侵蚀状态与保护对策 [J]. 海洋地质与第四纪地质, 2013, 33(5): 35‒46.
Li G X, Gong L X, Yang J C, et al. Beach erosion along the coast of Shandong province and protection countermeasures [J]. Marine Geology & Quaternary Geology, 2013, 33(5): 35‒46.
|
[55] |
Lee E M. Coastal cliff behaviour: Observations on the relationship between beach levels and recession rates [J]. Geomorphology, 2008, 101(4): 558‒571.
|
[56] |
Walkden M, Dickson M. Equilibrium erosion of soft rock Shores with a shallow or absent beach under increased sea level rise [J]. Marine Geology, 2008, 251(1‒2): 75‒84.
|
[57] |
龚吕, 胡阳, 李贲, 等. 互花米草治理工程对大型底栖动物群落结构的影响: 以上海南汇边滩为例 [J]. 生态学杂志, 2024, 43(9): 2892‒2900.
Gong Lyu, Hu Y, Li B, et al. Effects of Spartina alterniflora eradication project on macrobenthos community structure: A case study of Nanhui tidal flat in Shanghai [J]. Chinese Journal of Ecology, 2024, 43(9): 2892‒2900.
|
[58] |
Bianchi C N, Morri C. Marine biodiversity of the Mediterranean Sea: Situation, problems and prospects for future research [J]. Marine Pollution Bulletin, 2000, 40(5): 367‒376.
|
[59] |
任光瑞. 临港潮滩盐沼植被的生态修复效果分析 [J]. 中国资源综合利用, 2024, 42(1): 135‒137.
Ren G R. Analysis on ecological restoration effect of salt marsh vegetation in Lingang tidal flats [J]. China Resources Comprehensive Utilization, 2024, 42(1): 135‒137.
|
[60] |
Davis A M. Shallow gas: An overview [J]. Continental Shelf Research, 1992, 12(10): 1077‒1079.
|
[61] |
Song L, Fan D D, Su J F, et al. Controls on shallow gas distribution, migration, and associated geohazards in the Yangtze subaqueous delta and the Hangzhou Bay [J]. Frontiers in Marine Science, 2023, 10: 1107530.
|
[62] |
Hu Y, Li H D, Xu J. Shallow gas accumulation in a small estuary and its implications: A case history from in and around Xiamen Bay [J]. Geophysical Research Letters, 2012, 39(24): L24605.
|
[63] |
Liu J P, De Master D J, Nittrouer C A, et al. A seismic study of the Mekong subaqueous delta: Proximal versus distal sediment accumulation [J]. Continental Shelf Research, 2017, 147: 197‒212.
|
[64] |
周其坤, 孙永福, 宋玉鹏, 等. 渤海湾某海洋平台场址浅层气分布与成因 [J]. 地质通报, 2021, 40(2): 298‒304.
Zhou Q K, Sun Y F, Song Y P, et al. Distribution and genesis of shallow gas in an offshore platform site in Bohai Bay [J]. Geological Bulletin of China, 2021, 40(2): 298‒304.
|
[65] |
高伟健, 李伟. 海底不稳定性研究进展及展望 [J]. 中国工程科学, 2023, 25(3): 109‒121.
Gao W J, Li W. Progress and prospect of seafloor instability research [J]. Strategic Study of CAE, 2023, 25(3): 109‒121.
|
[66] |
陈中轩, 来向华, 廖林燕, 等. 基于MIP-CPT技术的海底浅层气探测方法——以东海舟山海域为例 [J]. 石油学报, 2016, 37(2): 207‒213, 229.
Chen Z X, Lai X H, Liao L Y, et al.A new method for detecting submarine shallow gas based on MIP-CPT technology: A case study of Zhoushan sea area, East China Sea [J]. Acta Petrolei Sinica, 2016, 37(2): 207‒213, 229.
|
[67] |
朱瑶宏, 黄燕庆, 曾洪贤, 等. 杭州湾大桥南岸工程地质特征与浅层气分布 [J]. 岩土力学, 2002, 23(S1): 215‒219.
Zhu Y H, Huang Y Q, Zeng H X, et al. Engineering geological features and shallow gas distribution insouth bank of Hangzhou bay bridge [J]. Rock and Soil Mechanics, 2002, 23(S1): 215‒219.
|
[68] |
郭爱国, 孔令伟, 沈林冲, 等. 地铁建设中浅层气危害防治对策研究 [J]. 岩土力学, 2013, 34(3): 769‒775.
Guo A G, Kong L W, Shen L C, et al. Study of disaster countermeasures of shallow gas in metro construction [J]. Rock and Soil Mechanics, 2013, 34(3): 769‒775.
|
[69] |
Piper D J W, Cochonat P, Morrison M L. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar [J]. Sedimentology, 1999, 46(1): 79‒97.
|
[70] |
Satake K, Tanioka Y. The July 1998 Papua new Guinea earthquake: Mechanism and quantification of unusual tsunami generation [J]. Pure and Applied Geophysics, 2003, 160(10): 2087‒2118.
|
[71] |
Matsumoto T, Tappin D R, SOS Onboard Scientific Party. Possible coseismic large-scale landslide off the northern coast of Papua new Guinea in July 1998: Geophysical and geological results from SOS cruises [J]. Pure and Applied Geophysics, 2003, 160(10): 1923‒1943.
|
[72] |
Hunt J E, Tappin D R, Watt S L, et al. Submarine landslide mega blocks show half of Anak Krakatau island failed on December 22nd, 2018 [J]. Nature Communications, 2021, 12(1): 2827.
|
[73] |
Cauchon-Voyer G, Locat J, St-Onge G. Late-quaternary morpho-sedimentology and submarine mass movements of the Betsiamites area, Lower St. Lawrence Estuary, Quebec, Canada [J]. Marine Geology, 2008, 251(3‒4): 233‒252.
|
[74] |
Hansen L, L’heureux J S, Longva O. Turbiditic, clay-rich event beds in fjord-marine deposits caused by landslides in emerging clay deposits‒palaeoenvironmental interpretation and role for submarine mass-wasting [J]. Sedimentology, 2011, 58(4): 890‒915.
|
[75] |
Canals M, Lastras G, Urgeles R, et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: Case studies from the COSTA project [J]. Marine Geology, 2004, 213(1‒4): 9‒72.
|
[76] |
贾永刚, 单红仙. 黄河口海底斜坡不稳定性调查研究 [J]. 中国地质灾害与防治学报, 2000, 11(1): 1‒5.
Jia Y G, Shan H X. Investigation and study of slopeun stability of subaqueous delta of morden Yellow River [J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(1): 1‒5.
|
[77] |
Prior D B, Coleman J M. Active slides and flows in under consolidated marine sediments on the slopes of the Mississippi Delta [C]//Saxov S, Nieuwenhuis J K. Marine slides and other mass movements. Boston: Springer, 1982: 21‒49.
|
[78] |
Gatter R, Clare M A, Kuhlmann J, et al. Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation [J]. Earth-Science Reviews, 2021, 223: 103845.
|
[79] |
Milne J. Sub-oceanic changes [J]. The Geographical Journal, 1897, 10(2): 129.
|
[80] |
Lee H J, Schwab W C, Booth J S. Submarine landslides: An introduction. Submarine landslides: Selected studies in the U.S. Exclusive Economic Zone [R]. Reston: U.S. Geological Survey, 2002.
|
[81] |
Schwab W C, Lee H J, Twichell D C, et al. Sediment mass-flow processes on a depositional lobe, outer Mississippi fan [J]. Journal of Sedimentary Research, 1996, 66(5): 916‒927.
|
[82] |
Bennett R H. Pore-water pressure measurements: Mississippi delta submarine sediments [J]. Marine Geotechnology, 1977, 2(1‒4): 177‒189.
|
[83] |
Wallace L M, Webb S C, Ito Y, et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand [J]. Science, 2016, 352(6286): 701‒704.
|
[84] |
申艳军, 彭建兵, 贾永刚, 等. 海底地质灾害发育特征与监测技术研究现状及展望 [J]. 中国工程科学, 2023, 25(3): 95‒108.
Shen Y J, Peng J B, Jia Y G, et al. Research status and prospect of development characteristics and monitoring techniques of submarine geological hazards [J]. Strategic Study of CAE, 2023, 25(3): 95‒108.
|
[85] |
Sternberg R W, Creager J S. An instrument system to measure boundary-layer conditions at the sea floor [J]. Marine Geology, 1965, 3(6): 475‒482.
|
[86] |
Cacchione D A, Drake D E. A new instrument system to investigate sediment dynamics on continental shelves [J]. Marine Geology, 1979, 30(3‒4): 299‒312.
|
[87] |
Smith K L, Glatts R C, Baldwin R J, et al. An autonomous. bottom-transecting vehicle for making long time-series measurements of sediment community oxygen consumption to abyssal depths [J]. Limnology and Oceanography, 1997, 42(7): 1601‒1612.
|
[88] |
Lambrigtsen B, Brown S T, Gaier T C, et al. Monitoring the hydrologic cycle with the PATH mission [J]. Proceedings of the IEEE, 2010, 98(5): 862‒877.
|
[89] |
徐如彦, 沈宁, 倪佐涛, 等. 自升式连体潜标测量系统的设计与实施 [J]. 海洋科学, 2014, 38(12): 94‒98.
Xu R Y, Shen N, Ni Z T, et al. Design and analysis of the self-elevating double submerged buoy measurement system [J]. Marine Sciences, 2014, 38(12): 94‒98.
|
[90] |
赵广涛, 于新生, 李欣, 等. Benvir: 一个深海海底边界层原位监测装置 [J]. 高技术通讯, 2015, 25(1): 54‒60.
Zhao G T, Yu X S, Li X, et al. Benvir: A in situ deep-sea observation system for benthic enviromental monitoring [J]. Chinese High Technology Letters, 2015, 25(1): 54‒60.
|
[91] |
杨肖迪, 马瑞民, 罗小桥, 等. 海底浅层气探测识别方法研究 [J]. 海岸工程, 2020, 39(3): 187‒195.
Yang X D, Ma R M, Luo X Q, et al. Study on the methods for detection and identification of sub-seabed shallow gases [J]. Coastal Engineering, 2020, 39(3): 187‒195.
|
[92] |
苗成省, 李青, 贾生尧, 等. 基于薄膜界面探测的近海浅层气中甲烷浓度检测 [J]. 传感技术学报, 2018, 31(11): 1662‒1668.
Miao C X, Li Q, Jia S Y, et al. Detection of methane concentration in shallow gas from offshore based on thin film interface detection [J]. Chinese Journal of Sensors and Actuators, 2018, 31(11): 1662‒1668.
|
[93] |
Sultan N, Marsset B, Ker S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B8): B08101.
|
[94] |
Sultan N, Cattaneo A, Sibuet J C, et al. Deep sea in situ excess pore pressure and sediment deformation off NW Sumatra and its relation with the December 26, 2004 Great Sumatra-Andaman Earthquake [J]. International Journal of Earth Sciences, 2009, 98(4): 823‒837.
|
[95] |
Stegmann S, Sultan N, Garziglia S, et al. A long-term monitoring array for landslide precursors: A case study at the Ligurian slope (western Mediterranean Sea) [R]. Houston: The Offshore Technology Conference, 2012.
|
[96] |
Wallace L M, Webb S C, Ito Y, et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand [J]. Science, 2016, 352(6286): 701‒704.
|
[97] |
Wang Z H, Sun Y F, Jia Y G, et al. Wave-induced seafloor instabilities in the subaqueous Yellow River Delta—Initiation and process of sediment failure [J]. Landslides, 2020, 17(8): 1849‒1862.
|
[98] |
钱宁, 万兆惠. 泥沙运动力学 [M]. 北京: 科学出版社, 1983.
Qian N, Wan Z H. Mechanics of sediment transport [M]. Beijing: Science Press, 1983.
|
[99] |
张瑞瑾. 河流泥沙动力学(第二版) [M]. 北京: 中国水利水电出版社, 1998.
Zhang R J. River sediment dynamics (second edition) [M]. Beijing: China Water Resources and Hydropower Press, 1998.
|
[100] |
Dou G R. Incipient motion of sediment under currents [J]. China Ocean Engineering, 2000 (4): 391‒406.
|
[101] |
Wu Y, Xu H J, Xu D, et al. Incipient velocity of non-uniform sediment in sloping river bends [J]. Transactions of Tianjin University, 2014, 20(3): 163‒167.
|
[102] |
Duncan J M. State of the art: Limit equilibrium and finite-element analysis of slopes [J]. Journal of Geotechnical Engineering, 1996, 122(7): 577‒596.
|
[103] |
Hencky H. Über einige statisch bestimmte Fälle des gleichgewichts in plastischen Körpern [J]. ZAMM-Journal of Applied Mathematics and Mechanics: Zeitschrift FürAngewandte Mathematik und Mechanik, 1923, 3(4): 241‒251.
|
[104] |
Chen W F. Limit analysis and soil plasticity [M]. Amsterdam: Elsevier Science Publication, 1975.
|
[105] |
Einstein H A.The bed load function for sediment transport in open channel flow [J]. Technical Bulletin, 1950, 1026: 1‒71.
|
[106] |
Yossef M F M, de Vriend H J. Sediment exchange between a river and its groyne fields: Mobile-bed experiment [J]. Journal of Hydraulic Engineering, 2010, 136(9): 610‒625.
|
[107] |
张绪进, 赵世强, 陈远信. 非均匀推移质级配研究 [J]. 泥沙研究, 1990, 15(3): 48‒55.
Zhang X J, Zhao S Q, Chen Y X. Study on non-uniform bed load gradation [J]. Journal of Sediment Research, 1990, 15(3): 48‒55.
|
[108] |
郭子扬, 张磊, 关见朝, 等. 床面推移质颗粒跃移过程的水槽试验研究 [J]. 泥沙研究, 2022, 47(1): 16‒22.
Guo Z Y, Zhang L, Guan J Z, et al. Flume experiment on the process of bed load saltation on the bed [J]. Journal of Sediment Research, 2022, 47(1): 16‒22.
|
[109] |
韩其为. 推移质运动统计理论 [M].北京: 科学出版社, 2021.
Han Q W. Statistical theory of bedload movement [M]. Beijing: Science Press, 2021.
|
[110] |
Mohrig D, Ellis C, Parker G, et al. Hydroplaning of subaqueous debris flows [J]. Geological Society of America Bulletin, 1998, 110(3): 387‒394.
|
[111] |
Nian T K, Wu H, Li D Y, et al. Experimental investigation on the formation process of landslide dams and a criterion of river blockage [J]. Landslides, 2020, 17(11): 2547‒2562.
|
[112] |
Zakeri A, Høeg K, Nadim F. Submarine debris flow impact on pipelines—Part I: Experimental investigation [J]. Coastal Engineering, 2008, 55(12): 1209‒1218.
|
[113] |
Acosta E A, Tibana S, De Almeida M D S S, et al. Centrifuge modeling of hydroplaning in submarine slopes [J]. Ocean Engineering, 2017, 129: 451‒458.
|
[114] |
胡光海. 东海陆坡海底滑坡识别及致滑因素影响研究 [D]. 青岛: 中国海洋大学(博士学位论文), 2010.
Hu G H. Identification of submarine landslides along the continental slope of the East China Sea and analysis of factors causing submarine landslides [D]. Qingdao: Ocean University of China (Doctoral dissertation), 2010.
|
[115] |
Zhang J H, Wang Z B, Zhao H, et al. Multi-scale CFD simulation of hydrodynamics and cracking reactions in fixed fluidized bed reactors [J]. Applied Petrochemical Research, 2015, 5(4): 255‒261.
|
[116] |
Shan Z G, Wu H, Ni W D, et al. Recent technological and methodological advances for the investigation of submarine landslides [J]. Journal of Marine Science and Engineering, 2022, 10(11): 1728.
|
[117] |
Ward S L, Neill S P, Van Landeghem K J J, et al. Classifying seabed sediment type using simulated tidal-induced bed shear stress [J]. Marine Geology, 2015, 367: 94‒104.
|
[118] |
Wu Y S, Chaffey J, Greenberg D A, et al. Tidally-induced sediment transport patterns in the upper bay of Fundy: A numerical study [J]. Continental Shelf Research, 2011, 31(19‒20): 2041‒2053.
|
[119] |
van Dijk T A G P, Kleinhans M G. Processes controlling the dynamics of compound sand waves in the North Sea, Netherlands [J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F4): F04S10.
|
[120] |
Carter L, Heath R A. Role of mean circulation, tides, and waves in the transport of bottom sediment on the New Zealand continental shelf [J]. New Zealand Journal of Marine and Freshwater Research, 1975, 9(4): 423‒448.
|
[121] |
Wang J, Dai Z J, Mei X F, et al. Tropical cyclones significantly alleviate mega-deltaicerosion induced by high riverine flow [J]. Geophysical Research Letters, 2020, 47(19): e2020GL089065.
|
[122] |
Luan H L, Ding P X, Yang S L, et al. Accretion-erosion conversion in the subaqueous Yangtze Delta in response to fluvial sediment decline [J]. Geomorphology, 2021, 382: 107680.
|
[123] |
Gu J, Chen W, Qin X, et al. Numerical analysis of the influence of Hengsha passage on sediment deposition in the upper reach of the deepwater navigation channel in the Changjiang River estuary [R]. Xi'an: 2011 International Symposium on Water Resource and Environmental Protection, 2011.
|
[124] |
Luan H L, Ding P X, Wang Z B, et al. Morpho dynamic impacts of large-scale engineering projects in the Yangtze River Delta [J]. Coastal Engineering, 2018, 141: 1‒11.
|
[125] |
张峰, 刘丽华, 吴能友, 等. 含天然气水合物沉积介质力学本构关系及数值模拟研究现状 [J]. 新能源进展, 2017, 5(6): 443‒449.
Zhang F, Liu L H, Wu N Y, et al. Status of constitutive relationship and numerical simulation of gas hydrate deposited medium [J]. Advances in New and Renewable Energy, 2017, 5(6): 443‒449.
|
[126] |
Sun J X, Ning F L, Lei H W, et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: A case study [J]. Journal of Petroleum Science and Engineering, 2018, 170: 345‒367.
|
[127] |
Lai A C H, Chan S N, Law A W, et al. Spreading hypothesis of a particle plume [J]. Journal of Hydraulic Engineering, 2016, 142(12): 04016065.
|
[128] |
Fraga B, Stoesser T. Influence of bubble size, diffuser width, and flow rate on the integral behavior of bubble plumes [J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 3887‒3904.
|
[129] |
Dey R, Hawlader B C, Phillips R, et al. Numerical modelling of submarine landslides with sensitive clay layers [J]. Géotechnique, 2016, 66(6): 454‒468.
|
[130] |
Shire T, O’Sullivan C. Micromechanical assessment of an internal stability criterion [J]. Acta Geotechnica, 2013, 8(1): 81‒90.
|
[131] |
Jiang M J, Sun C, Crosta G B, et al. A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach [J]. Engineering Geology, 2015, 190: 1‒16.
|
[132] |
Imran J, Harff P, Parker G. A numerical model of submarine debris flow with graphical user interface [J]. Computers & Geosciences, 2001, 27(6): 717‒729.
|
[133] |
Gauer P, Kvalstad T J, Forsberg C F, et al. The last phase of the storegga slide: Simulation of retrogressive slide dynamics and comparison with slide-scar morphology [J]. Marine and Petroleum Geology, 2005, 22(1/2): 171‒178.
|
[134] |
郭增建, 秦保燕. 灾害物理学简论 [J]. 灾害学, 1987, 2(2): 25‒33.
Guo Z J, Qin B Y. Brief discussion on disaster physics [J]. Journal of Catastrophology, 1987, 2(2): 25‒33.
|
[135] |
Kappes M S, Keiler M, von Elverfeldt K, et al. Challenges of analyzing multi-hazard risk: A review [J]. Natural Hazards, 2012, 64(2): 1925‒1958.
|
[136] |
Helbing D. Globally networked risks and how to respond [J]. Nature, 2013, 497(7447): 51‒59.
|
[137] |
Menoni S. Chains of damages and failures in a metropolitan environment: Some observations on the Kobe earthquake in 1995 [J]. Journal of Hazardous Materials, 2001, 86(1‒3): 101‒119.
|
[138] |
韩金良, 吴树仁, 汪华斌. 地质灾害链 [J]. 地学前缘, 2007, 14(6): 11‒23.
Han J L, Wu S R, Wang H B. Preliminary study on geological hazard chains [J]. Earth Science Frontiers, 2007, 14(6): 11‒23.
|
[139] |
Elger J, Berndt C, Rüpke L, et al. Submarine slope failures due to pipe structure formation [J]. Nature Communications, 2018, 9: 715.
|
[140] |
Dong C M, Xu G J, Han G Q, et al. Recent developments in artificial intelligence in oceanography [J]. Ocean-Land-Atmosphere Research, 2022 (5): 1‒26.
|
/
〈 |
|
〉 |